Skip to main content
Log in

Palladium–Nickel Supported and Palladated Activated Diatomite as an Efficient Catalyst for Poly-α-olefins Hydrogenation

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this work, comparative testing of the activity of low-percentage palladium and palladium-nickel catalysts supported on activated diatomite with a commercial nickel catalyst from BASF was carried out in the process of hydrogenation of polyalphaolefins (PAO-4). It has been found that palladium catalysts carry out the process under milder conditions, demonstrate higher activity compared to nickel catalysts, significantly reduce the process time, and provide a higher degree of hydrogenation. The activity of bimetallic catalysts is lower than that of monometallic palladium catalysts. Furthermore, Ni exhibits a reaction temperature of at least 150 °C, while Pd is at least 110 °C. If nickel is a single-use catalyst, then when palladium is used 5 times remains an excellent catalytic activity. Catalyst activity is related to the form of adsorbed hydrogen, and on Pd catalyst hydrogen is weakly bound form, while on Ni hydrogen is strongly bound form. The physicochemical characteristics of catalysts and polyalphaolefin oils also have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors declare that the data and materials are available.

References

  1. Rudnik LR (2006) Synthetics, mineral oils, and bio-based lubricants: chemistry and technology. Taylor and Francis, Milton park

    Google Scholar 

  2. Mang T, Dresel W (2007) Lubricants and lubrication. Wiley

    Google Scholar 

  3. Samaheh S, Naeimeh B, Mehdi N, Farshid Z, Sedva D, Sedigheh S, Ameneh R, Mehdi S, Seyed A (2019) Int J Polym Anal Charact 24:556–570

    Article  Google Scholar 

  4. Yang N, Nandapurkar PJ (2009) Low viscosity polyalphaolefins based on 1-decene and 1-dodecane. US Patent 7592497

  5. Ray S, Rao PV, Choudary NV (2012) Lubr Sci 24:23–44

    Article  CAS  Google Scholar 

  6. Sun H, Shen B, Wu D, Guo X, Li D (2016) J Catal 339:84–92

    Article  CAS  Google Scholar 

  7. Olejniczak A, Kucinska A, Cyganiuk AW, Lukaszewicz JP (2012) Ind Eng Chem Res 51:5117–5123

    Article  CAS  Google Scholar 

  8. Bazanov TA, Petrov LV, Psikha BL, Psikha SB, Kharitonov VV (2008) Pet Chem 48:296–301

    Article  Google Scholar 

  9. Williamson JB, Lewis SE, Johnson RR, Manning IM, Leibfarth FA (2019) Chem Int Ed 58:8654–8668

    Article  CAS  Google Scholar 

  10. Guseinova GA, Samedova FI, Shabalina TN (2010) Chem Technol Fuels Oils 46:25–30

    Article  CAS  Google Scholar 

  11. Savchenko VI, Aldoshin SM (2010) Pet Chem 50:255–265

    Article  Google Scholar 

  12. Sadjadi S, Koohestani F, Pareras G, Nekoomanesh-Haghighi M, Bahri-Laleh N, Poater A (2021) J Mol Liq 331:115740

    Article  CAS  Google Scholar 

  13. Nifantev IE, Vinogradov AA, Vinogradov AA, Sedov IV, Dorokhov VG, Lyadov AS, Ivchenko PV (2018) Appl Catal A 549:40–50

    Article  CAS  Google Scholar 

  14. De Rogatis L, Cargnello M, Gombac V, Lorenzut B, Montini T, Fornasiero P (2010) Chem Sus Chem 3:24–42

    Article  Google Scholar 

  15. Campbell CT, Sellers JR (2013) Faraday Discuss 162:9–30

    Article  CAS  PubMed  Google Scholar 

  16. Alijani H, Beyki MH, Shariatinia Z, Bayat M, Shemirani F (2014) Chem Eng J 253:456–463

    Article  CAS  Google Scholar 

  17. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  18. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  19. ISO 3839:1996/AMD 1:2020 Petroleum products - determination of bromine number of distillates and aliphatic olefins - Electrometric method - Amendment 1 https://www.iso.org/standard/77907.html

  20. ASTM D445:2021 Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity)

  21. ASTM D2270-10:2016 Standard practice for calculating viscosity index from kinematic viscosity at 40 °C and 100 °C. 3934067

  22. ASTM D5949-16:2016 Standard test method for pour point of petroleum products (Automatic Pressure Pulsing Method)

  23. Toshtay K, Auyezov AB, Bizhanov ZA, Yeraliyeva A, Toktasinov S, Kudaibergen B, Nurakyshev A (2015) Eurasian Chem Technol J 17:33–39

    Article  CAS  Google Scholar 

  24. Toshtay K, Auezov AB (2020) Catal Ind 12:7–15

    Article  Google Scholar 

  25. Şan O, Goren R, Ozgür C (2009) Int J Miner Process 93:6–10

    Article  Google Scholar 

  26. Kruk M, Jaroniec M (2001) Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  27. Martin RW, Deckman DE, Kelly KJ, Emett CJ, Hagemeister MP, Harrington BA, Lin CY, Matsunaga PT, Ruff CJ, Stavens KB (2016) U.S. Patent US9234150:2016

  28. Bariås OA, Holmen A, Blekkan EA (1996) J Catal 158:1–12

    Article  Google Scholar 

  29. Miller JT, Meyers BL, Modica FS, Lane GS, Vaarkamp M, Koningsberger DC (1993) J Catal 143:395–408

    Article  CAS  Google Scholar 

  30. Mihet M, Lazar MD (2018) Catal Today 306:294–299

    Article  CAS  Google Scholar 

  31. Shin EW, Cho SI, Kang JH, Kim WJ, Park JD, Moon SH (2000) Korean J Chem Eng 17:468–472

    Article  CAS  Google Scholar 

  32. El Gamal IM, Gobiel S (1996) J Appl Polym Sci 61:1265–1272

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP14871087) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

KT: Data curation, Conceptualization, Supervision, Writing—original draft, Writing—review & editing. AA: Writing—review & editing. YA: Experimental data. RA: Writing paper. SA: Experimental analysis. YS: Experimental tool. UN: Experimental tool.

Corresponding authors

Correspondence to Kainaubek Toshtay, Yermek Aubakirov or Rachid Amrousse.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

We declare that all authors approved their participation to the current research work.

Consent for Publication

The authors give the publisher the permission of the authors to publish the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toshtay, K., Auyezov, A., Aubakirov, Y. et al. Palladium–Nickel Supported and Palladated Activated Diatomite as an Efficient Catalyst for Poly-α-olefins Hydrogenation. Catal Surv Asia 27, 296–305 (2023). https://doi.org/10.1007/s10563-023-09394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09394-y

Keywords

Navigation