Skip to main content
Log in

Synthesis of Biodegradable Grafted Copolymers of Gelatin and Polymethyl Methacrylate

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

Grafted copolymers of gelatin and polymethyl methacrylate are synthesized using the tributylboron–oxygen initiating system in an aqueous dispersion at 60°C. The products are characterized by IR spectroscopy and gel permeation chromatography. The proportion of polymethyl methacrylate in the copolymer is 2–60% and increases with a higher concentration of alkylborane in the initial mixture. The particle size of the aqueous dispersions of the copolymers determined by dynamic light scattering exceeds the particle size of gelatin. The thermogravimetric curves of the copolymers are similar to those of gelatin, with thermal stability tending to increase with a higher concentration of tributylboron. All the copolymers are biodegradable by fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Vroman and L. Tighzert, “Biodegradable polymers,” Materials, No. 2, 307–344 (2009).

    Article  CAS  Google Scholar 

  2. L. Averous and E. Pollet, “Chapter 2. Biodegradable polymers,” in Environmental Silicate Nano-Biocomposites. Green Energy and Technology (Springer-Verlag, London, 2012).

    Book  Google Scholar 

  3. B. Laycocka, M. Nikolić, J. M. Colwell, E. Gauthier, P. Halleya, S. Bottle, and G. George, “Lifetime prediction of biodegradable polymers,” Prog. Polym. Sci. 71, 144–189 (2017).

    Article  Google Scholar 

  4. A. P. Kujundziski and D. Chamovska, “Biodegradable polymers suitable for tissue engineering and drug delivery systems,” Zast. Mater. 58, 333–348 (2017).

    Google Scholar 

  5. S. Z. Rogovina, K. V. Aleksanyan, A. Ya. Gorenberg, N. E. Ivanushkina, E. V. Prut, and A. A. Berlin, “Investigation of biodegradability of composites based on polyethylene and polysaccharides by independent methods,” Mendeleev Commun. 28, 105–107 (2018).

    Article  CAS  Google Scholar 

  6. W. Xue-chuan, P. B. Zhang, and S. R. Long-fang, “Evaluation of the biodegradability of modified collagen sizing agent, alkyl ketene dimer sizing agent and styrene-acrylate copolymer sizing agent,” Zhongguo Zaozhi 33 (3), 11–16 (2014).

    Google Scholar 

  7. L. M. Yarysheva, M. Z. Averbukh, N. F. Bakeev, and P. V. Kozlov, “Investigation of the physical and mechanical properties of grafted copolymers of gelatin with synthetic polymers and their mixtures,” Vysokomol. Soedin. 16 (8), 1807–1812 (1974).

    CAS  Google Scholar 

  8. A. V. Varlamov, A. N. Zuev, and E. E. Latinskii, “Modification of properties of gelatin of the emulsion layer of photographic film with styrene acrylate latexes,” Khim. Prom-st. 85 (3), 135–137 (2008).

    CAS  Google Scholar 

  9. S. Ibrahima, G. A. M. Nawwarb, and M. Sultan, “Development of bio-based polymeric hydrogel: Green, sustainable and low cost plant fertilizer packaging material,” J. Environ. Chem. Eng., No. 4, 203–210 (2016).

  10. S. D. Fitzpatrick, M. A. J. Mazumder, F. Lasowski, L. E. Fitzpatrick, and H. Sheardown, “PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold,” Biomacromolecules, No. 11, 2261–2267 (2010).

    Article  CAS  Google Scholar 

  11. Z. Ma, Ch. Gao, Yi. Gong, and J. Shen, “Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor,” Biomaterials 26, 1253–1259 (2005).

    Article  CAS  Google Scholar 

  12. S. Ohya and T. Matsuda, “Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: Molecular and formulation parameters vs. cell proliferation potential,” J. Biomater. Sci. Polym. Ed. 16 (7), 809–827 (2005).

    Article  CAS  Google Scholar 

  13. N. D. Khanna, I. Kaur, T. C. Bhalla, and N. Gautam, “Effect of biodegradation on thermal and crystalline behavior of polypropylene—gelatin based copolymers,” J. Appl. Polym. Sci. 118, 1476–1488 (2010).

    CAS  Google Scholar 

  14. K. L. Shantha and K. P. Rao, “Hybrid copolymers for controlled release of contraceptive steroids,” J. Bioact. Compat. Polym. 8, 142–157 (1993).

    Article  CAS  Google Scholar 

  15. O. Bas, E. M. De-Juan-Pardo, M. P. Chhaya, et al., “Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs,” Eur. Polym. J. 72, 451–463 (2015).

    Article  CAS  Google Scholar 

  16. S. Fujisawa and Y. Kadoma, “Tri-n-butylborane/watercomplex-mediated copolymerization of methyl methacrylate with proteinaceous materials and proteins: A review,” Polymers, No. 2, 575– 595 (2010).

    Article  CAS  Google Scholar 

  17. B. M. Mikhailov and Yu. N. Bubnov, Organoboron Compounds in Organic Synthesis (Nauka, 1977).

    Google Scholar 

  18. K. Kojima, S. Iguchi, Y. Kajima, and M. Yoshikuni, “Grafting of methyl methacrylate onto collagen initiated by tributylborane,” J. Appl. Polym. Sci. 28, 87–95 (1983).

    Article  CAS  Google Scholar 

  19. H. Okamura, A. Sudo, and T. Endo, “Generation of radical species on polypropylene by alkylborane-oxygen system and its application to graft polymerization,” J. Polym. Sci.: Part A: Polym. Chem. 47, 6163–6167 (2009).

    Article  CAS  Google Scholar 

  20. M. Yu. Zaremski, E. S. Garina, M. E. Gurskii, and Yu. N. Bubnov, “Organoboranes-atmospheric oxygen systems as unconventional initiators of radical polymerization,” Polym. Sci., Ser. B 55, 304–326 (2013).

    Article  CAS  Google Scholar 

  21. M. Yu. Zaremskii, V. V. Odintsova, A. V. Plutalova, M. E. Gurskii, and Yu. N. Bubnov, “Reactions of initiation and reinitiation in polymerization mediated by organoborane–oxygen systems,” Polym. Sci., Ser. B 60, 162–171 (2018).

    Article  CAS  Google Scholar 

  22. M. Yu. Zaremski, V. V. Odintsova, A. V. Bol’shakova, E. S. Garina, M. E. Gurskii, and Yu. N. Bubnov, “Polymerization of methyl methacrylate in the presence of boroxyl radicals. Synthesis of block copolymers,” Polym. Sci., Ser. B 60, 436–444 (2018).

    Article  CAS  Google Scholar 

  23. L. L. Semenycheva, Yu. O. Matkivskaia, N. B. Valetova, Yu. O. Chasova, N. L. Pegeev, A. L. Eloyan, Yu. A. Kursky, and A. A. Moikin, “Specific features of “compensating” copolymerization of butyl acrylate with vinyl butyl ether in the presence of triethylboron," Russ. Chem. Bull. 66, 1660–1664 (2017).

    Article  CAS  Google Scholar 

  24. P. Nesvadba, “Controlled/living radical polymerization mediated by stable organic radicals,” in Fundamentals of Controlled/Living Radical Polymerization, Ed. N. V. Tsarevsky and B. S. Sumerlin (RSC, Cambridge, 2013), pp. 112–167.

    Google Scholar 

  25. M. Ouchi and M. Sawamoto, “Sequence-controlled polymers via reversible-deactivation radical polymerization,” Polym. J. 50, 83–94 (2018).

    Article  CAS  Google Scholar 

  26. M. Yu. Zaremski, “Kinetic features of pseudoliving radical polymerization under conditions of reversible inhibition by nitroxide radicals,” Polym. Sci., Ser. C 57, 65–85.

  27. V. A. Dodonov, Yu. L. Kuznetsova, A. I. Vilkova, A. S. Skuchilina, V. I. Nevodchikov, and L. N. Beloded, “Uncontrolled pseudoliving free-radical polymerization of methyl methacrylate in the presence of butyl-p-benzoquinones,” Russ. Chem. Bull. 56, 1162–1165 (2007).

    Article  CAS  Google Scholar 

  28. D. V. Ludin, Yu. L. Kuznetsova, and S. D. Zaitsev, “Copolymerization of styrene with methyl methacrylate in the presence of the system tributylborane–p-quinone,” Polym. Sci., Ser. B 58 (5), 503–509 (2016).

    Article  CAS  Google Scholar 

  29. D. V. Ludin, Yu. L. Kuznetsova, I. D. Grishin, V. A. Kuropatov, and S. D. Zaitsev, “Controlled radical polymerization of alkyl acrylates in the presence of the tri-n-butylborane–p-quinone system,” Russ. Chem. Bull. 65, 1859–1866 (2016).

    Article  CAS  Google Scholar 

  30. D. V. Ludin, S. D. Zaitsev, Y. L. Kuznetsova, A. V. Markin, A. E. Mochalova, and E. V. Salomatina, “Starch-graft-poly(methyl acrylate) copolymer: The new approach to synthesis and copolymer characterization,” J. Polym. Res. 24, 3–9 (2017).

    Article  Google Scholar 

  31. V. A. Dodonov, Zh. V. Garusova, T. I. Starostina, and N. E. Chesnokova, “Low-molecular thermostable polymethylmethacrylate,” Vysokomol. Soedin. 42, 1429–1432 (2000).

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (state order no. 4.8337.2017/BCh) and with the use of the equipment of the New Materials and Resource-Saving Technologies Center for Collective Use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Semenycheva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Y.L., Morozova, E.A., Vavilova, A.S. et al. Synthesis of Biodegradable Grafted Copolymers of Gelatin and Polymethyl Methacrylate. Polym. Sci. Ser. D 13, 453–459 (2020). https://doi.org/10.1134/S1995421220040115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421220040115

Keywords:

Navigation