Skip to main content

Biodegradable Acrylic Polymers and Nanocomposites

  • Chapter
  • First Online:
Green-Based Nanocomposite Materials and Applications

Abstract

This chapter describes a recent literature analysis on the synthesis, applications, and biodegradation of green-based grafted acrylic copolymers and nanocomposites. It presents an updated review of the different polymers, such as natural gums, starch, cellulose, polylactic acid, chitosan, and alginate, modified through this methodology. In all cases reviewed, these materials are copolymers of polyacrylic acid (PAA), polyacrylamide (PAM), or sometimes both simultaneously, grafted to other natural polymers with a polysaccharide chain. Copolymerization is normally carried out in aqueous solutions of the biodegradable polymer adding acrylic acid (AA) or acrylamide (AM) and a radical initiator to start the in-situ polymerization process. In some cases, depending on the final application, small concentrations of methylene bisacrylamide (MAB) is added to the polymerization solution as a crosslinking agent. The biodegradation analysis of the prepared copolymers is conducted under three conditions and tests: the first one is by composting; the second one is the soil burial method; and the third one, normally used in copolymers used for controlled release agents of drugs, is carried out through in-vitro tests using standardized buffer solutions or pancreatic solutions in pH ranges, simulating the conditions of stomach gastric juices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaytán, I., Burelo, M., Loza-Tavera, H.: Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl. Microbiol. Biotechnol. 105, 991–1006 (2021). https://doi.org/10.1007/s00253-020-11073-1

  2. Joshi, S.J., Abed, R.M.: Biodegradation of polyacrylamide and its derivatives. Environ. Process. 4(2), 463–476 (2017). https://doi.org/10.1007/s40710-017-0224-0

    Article  Google Scholar 

  3. Nyyssölä, A., Ahlgren, J.: Microbial degradation of polyacrylamide and the deamination product polyacrylate. Int. Biodeter. Biodegr. 139, 24–33 (2019). https://doi.org/10.1016/j.ibiod.2019.02.005

    Article  CAS  Google Scholar 

  4. Sarmah, D., Karak, N.: Biodegradable superabsorbent hydrogel for water holding in soil and controlled‐release fertilizer. J. Appl. Polym. Sci. 137(13), (2020). https://doi.org/10.1002/app.48495

  5. Jing, Z., Xu, A., Liang, Y.Q., Zhang, Z., Yu, C., Hong, P., Li, Y.: Biodegradable poly (acrylic acid-co-acrylamide)/poly (vinyl alcohol) double network hydrogels with tunable mechanics and high self-healing performance. Polymers 11(6), 952 (2019). https://doi.org/10.3390/polym11060952

    Article  CAS  Google Scholar 

  6. Kumar, V., Mittal, H., Alhassan, S.M.: Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. Int. J. Biol. Macromol. 132, 1252–1261 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.023

    Article  CAS  Google Scholar 

  7. Choudhary, S., Sharma, K., Bhatti, M.S., Sharma, V., Kumar, V.: DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and in situ field studies. RSC Adv. 12(8), 4780–4794 (2022). https://doi.org/10.1039/D1RA08786J

    Article  CAS  Google Scholar 

  8. Mittal, H., Kumar, V., Alhassan, S.M., Ray, S.S.: Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Int. J. Biol. Macromol. 114, 283–294 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.131

    Article  CAS  Google Scholar 

  9. Kaith, B.S., Jindal, R., Kumari, M., Kaur, M.: Biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release. React. Funct. Polym. 120, 1–13 (2017). https://doi.org/10.1016/j.reactfunctpolym.2017.08.012

    Article  CAS  Google Scholar 

  10. Singh, J., Kumar, S., Dhaliwal, A. S.: Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (acrylic acid) biodegradable nanocomposite. J. Drug Deliv. Sci. Tec. 55 (2020). https://doi.org/10.1016/j.jddst.2019.101384

  11. Kaith, B.S., Shanker, U., Gupta, B.: One-pot green synthesis of polymeric nanocomposite: biodegradation studies and application in sorption-degradation of organic pollutants. J. Environ. Manage. 234, 345–356 (2019). https://doi.org/10.1016/j.jenvman.2018.12.117

    Article  CAS  Google Scholar 

  12. Gou, S., Li, S., Feng, M., Zhang, Q., Pan, Q., Wen, J., Wu, Y., Guo, Q.: Novel biodegradable graft-modified water-soluble copolymer using acrylamide and konjac glucomannan for enhanced oil recovery. Ind. Eng. Chem. Res. 56(4), 942–951 (2017). https://doi.org/10.1021/acs.iecr.6b04649

    Article  CAS  Google Scholar 

  13. Ganguly, S., Maity, T., Mondal, S., Das, P., Das, N.C.: Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int. J. Biol. Macromol. 95, 185–198 (2017). https://doi.org/10.1016/j.ijbiomac.2016.11.055

    Article  CAS  Google Scholar 

  14. Junlapong, K., Maijan, P., Chaibundit, C., Chantarak, S.: Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. Int. J. Biol. Macromol. 158, 258–264 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.247

    Article  CAS  Google Scholar 

  15. Kolya, H., Sasmal, D., Tripathy, T.: Novel biodegradable flocculating agents based on grafted starch family for the industrial effluent treatment. J. Polym. Environ. 25(2), 408–418 (2017). https://doi.org/10.1007/s10924-016-0825-0

    Article  CAS  Google Scholar 

  16. Kolya, H., Tripathy, T.: Flocculation and color removal performances of polyacrylamide and poly N, N-dimethylacrylamide grafted starch: a comparative study. Am. J. Mater. Sci. Technol. 3(1), 1–11 (2017). https://doi.org/10.11648/j.ajpst.20170301.11

  17. Sasmal, D., Maity, J., Kolya, H., Tripathy, T.: Study of congo red dye removal from its aqueous solution using sulfated acrylamide and N, N-dimethyl acrylamide grafted amylopectin. J. Water Process. Eng. 18, 7–19 (2017). https://doi.org/10.1016/j.jwpe.2017.05.007

    Article  Google Scholar 

  18. Sasmal, D., Maity, J., Kolya, H., Tripathy, T.: Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): a bio-degradable graft copolymer. Int. J. Biol. Macromol. 97, 585–597 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.081

    Article  CAS  Google Scholar 

  19. Kolya, H., Tripathy, T.: Metal complexation studies of amylopectin-graft-poly [(N, N-dimethylacrylamide)-co-(acrylic acid)]: a biodegradable synthetic graft copolymer. Polym. Int. 64(10), 1336–1351 (2015). https://doi.org/10.1002/pi.4922

    Article  CAS  Google Scholar 

  20. Tripathy, T., Kolya, H., Jana, S., Senapati, M.: Green synthesis of Ag–Au bimetallic nanocomposites using a biodegradable synthetic graft copolymer; hydroxyethyl starch-g-poly (acrylamide-co-acrylic acid) and evaluation of their catalytic activities. Eur. Polym. J. 87, 113–123 (2017). https://doi.org/10.1016/j.eurpolymj.2016.12.019

    Article  CAS  Google Scholar 

  21. Tanan, W., Panichpakdee, J., Saengsuwan, S.: Novel biodegradable hydrogel based on natural polymers: synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J. 112, 678–687 (2019). https://doi.org/10.1016/j.eurpolymj.2018.10.033

    Article  CAS  Google Scholar 

  22. Qiao, D., Liu, H., Yu, L., Bao, X., Simon, G.P., Petinakis, E., Chen, L.: Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 147, 146–154 (2016). https://doi.org/10.1016/j.carbpol.2016.04.010

    Article  CAS  Google Scholar 

  23. Rop, K., Mbui, D., Karuku, G.N., Michira, I., Njomo, N.: Characterization of water hyacinth cellulose-g-poly (ammonium acrylate-co-acrylic acid)/nano-hydroxyapatite polymer hydrogel composite for potential agricultural application. Results Chem. 2 (2020). https://doi.org/10.1016/j.rechem.2019.100020

  24. Rop, K., Mbui, D., Njomo, N., Karuku, G.N., Michira, I., Ajayi, R.F.: Biodegradable water hyacinth cellulose-graft-poly (ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon 5(3) (2019). https://doi.org/10.1016/j.heliyon.2019.e01416

  25. Luo, M.T., Li, H.L., Huang, C., Zhang, H.R., Xiong, L., Chen, X.F., Chen, X.D.: Cellulose-based absorbent production from bacterial cellulose and acrylic acid: synthesis and performance. Polymers 10(7) (2018). https://doi.org/10.3390/polym10070702

  26. Guan, H., Li, J., Zhang, B., Yu, X.: Synthesis, properties, and humidity resistance enhancement of biodegradable cellulose-containing superabsorbent polymer. J. Polym. (2017). https://doi.org/10.1155/2017/3134681

    Article  Google Scholar 

  27. Bagheri, N., Lakouraj, M.M., Hasantabar, V., Mohseni, M.: Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water. J. Hazard. Mater. 403 (2021). https://doi.org/10.1016/j.jhazmat.2020.123631

  28. Melo, B.C., Paulino, F.A., Cardoso, V.A., Pereira, A.G., Fajardo, A.R., Rodrigues, F.H.: Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydr. Polym. 181, 358–367 (2018). https://doi.org/10.1016/j.carbpol.2017.10.079

    Article  CAS  Google Scholar 

  29. Lin, Y., Hong, Y., Song, Q., Zhang, Z., Gao, J., Tao, T.: Highly efficient removal of copper ions from water using poly (acrylic acid)-grafted chitosan adsorbent. Colloid Polym. Sci. 295(4), 627–635 (2017). https://doi.org/10.1007/s00396-017-4042-8

    Article  CAS  Google Scholar 

  30. Tian, R., Liu, Q., Zhang, W., Zhang, Y.: Preparation of lignin-based hydrogel and its sorption on Cu2+ ions and Co2+ ions in wastewaters. J. Inorg. Organomet. Polym. Mater. 28(6), 2545–2553 (2018). https://doi.org/10.1007/s10904-018-0943-3

    Article  CAS  Google Scholar 

  31. Medina, R.P., Nadres, E.T., Ballesteros, F.C., Rodrigues, D.F.: Incorporation of graphene oxide into a chitosan–poly (acrylic acid) porous polymer nanocomposite for enhanced lead adsorption. Environ. Sci.: Nano. 3(3), 638–646 (2016). https://doi.org/10.1039/C6EN00021E

  32. Bashir, S., Teo, Y.Y., Ramesh, S., Ramesh, K., Mushtaq, M.W.: Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int. J. Biol. Macromol. 117, 454–466 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.182

    Article  CAS  Google Scholar 

  33. Fang, S., Wang, G., Li, P., Xing, R., Liu, S., Qin, Y., Yu, H., Li, Chen, X., Li, K.: Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int. J. Biol. Macromol. 115, 754–761 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.072

  34. Xu, L., Qiu, L., Sheng, Y., Sun, Y., Deng, L., Li, X., Bradley, M., Zhang, R.: Biodegradable pH-responsive hydrogels for controlled dual-drug release. J. Mater. Chem. B. 6(3), 510–517 (2018). https://doi.org/10.1039/C7TB01851G

    Article  CAS  Google Scholar 

  35. Ahmadi, E., Zarghami, N., Jafarabadi, M.A., Alizadeh, L., Khojastehfard, M., Yamchi, M.R., Salehi, R.: Enhanced anticancer potency by combination chemotherapy of HT-29 cells with biodegradable, pH-sensitive nanoparticles for co-delivery of hydroxytyrosol and doxorubicin. J. Drug Deliv. Sci. Technol. 51, 721–735 (2019). https://doi.org/10.1016/j.jddst.2019.03.003

    Article  CAS  Google Scholar 

  36. Gagliardi, M., Bertero, A., Bifone, A.: Molecularly imprinted biodegradable nanoparticles. Sci. Rep. 7(1), 1–9 (2017). https://doi.org/10.1038/srep40046

    Article  CAS  Google Scholar 

  37. Samanta, S.K., Mandal, B., Tripathy, T.: Sodium alginate‐cl‐poly (N, N‐dimethyl acryl amide‐co‐2‐acrylamino‐2‐methyl‐1‐propane sulphonic acid/titanium dioxide nanocomposite hydrogel: an efficient dye‐removing agent. J. Appl. Polym. Sci. e52465 (2022). https://doi.org/10.1002/app.52465

  38. Cheaburu-Yilmaz, C.N., Lupuşoru, C.E., Vasile, C.: New alginate/PNIPAAm matrices for drug delivery. Polymers 11(2), 366 (2019). https://doi.org/10.3390/polym11020366

    Article  CAS  Google Scholar 

  39. Reddy, B.N., Rauta, P.R., Lakshmi, V.V., Sreenivasa, S.: Development, formulation, and evaluation of sodium alginate-g-poly (acryl amide-co-acrylic acid/cloiste-30b)/agnps hydrogel composites and their applications in paclitaxel drug delivery and anticancer activity. Int. J. Appl. Pharm. 10, 141–50 (2018). https://doi.org/10.22159/ijap.2018v10i3.25062

  40. Flores-Hernández, C.G., Cornejo-Villegas, M. de los A., Moreno-Martell, A., Del Real, A.: Synthesis of a biodegradable polymer of poly (sodium alginate/ethyl acrylate). Polymers 13, 504 (2021). https://doi.org/10.3390/polym13040504

  41. Li, L., Zheng, X., Pan, C., Pan, H., Guo, Z., Liu, B., Liu, Y.: A pH-sensitive and sustained-release oral drug delivery system: the synthesis, characterization, adsorption and release of the xanthan gum-graft-poly (acrylic acid)/GO–DCFP composite hydrogel. RSC Adv. 11, 26229–26240 (2021). https://doi.org/10.1039/D1RA01012C

    Article  CAS  Google Scholar 

  42. Santoso, S.P., Angkawijaya, A.E., Bundjaja, V., Hsieh, C.W., Go, A.W., Yuliana, M., Yi, Y., Phuong, H., Tran-Nguyeng, L., Edi, F., SuryadiIsmadjiab, S., Ismadji, S.: TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int. J. Biol. Macromol. 193, 721–733 (2021). https://doi.org/10.1016/j.ijbiomac.2021.10.044

    Article  CAS  Google Scholar 

  43. Singh, J., Dhaliwal, A.S.: Effective removal of methylene blue dye using silver nanoparticles containing grafted polymer of guar gum/acrylic acid as novel adsorbent. J. Polym. Environ. 29, 71–88 (2021). https://doi.org/10.1007/s10924-020-01859-9

    Article  CAS  Google Scholar 

  44. Deng, Z., Lin, B., Wang, W., Bai, L., Chen, H., Yang, L., Yangun, H., Weiun, D.: Stretchable, rapid self-healing guar gum-poly (acrylic acid) hydrogels as wearable strain sensors for human motion detection based on Janus graphene oxide. Int. J. Biol. Macromol. 191, 627–636 (2021). https://doi.org/10.1007/s11837-020-04490-0

    Article  CAS  Google Scholar 

  45. Makhado, E., Pandey, S., Nomngongo, P.N., Ramontja, J.: Preparation and characterization of xanthan gum-cl-poly (acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J. Colloid Interface Sci. 513, 700–714 (2018). https://doi.org/10.1016/j.jcis.2017.11.060

    Article  CAS  Google Scholar 

  46. Du, J., Yang, X., Xiong, H., Dong, Z., Wang, Z., Chen, Z., Zhao, L.: Ultrahigh adsorption capacity of acrylic acid-grafted xanthan gum hydrogels for Rhodamine B from aqueous solution. J. Chem. Eng. Data. 66, 1264–1272 (2021). https://doi.org/10.1021/acs.jced.0c00850

    Article  CAS  Google Scholar 

  47. Hosseini, S.M., Shahrousvand, M., Shojaei, S., Khonakdar, H.A., Asefnejad, A., Goodarzi, V.: Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): characterization and dye removal ability. Int. J. Biol. Macromol. 152, 884–893 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.082

    Article  CAS  Google Scholar 

  48. Elella, M.H.A., Goda, E.S., Gamal, H., El-Bahy, S.M., Nour, M.A., Yoon, K.R.: Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. Int. J. Biol. Macromol. 191, 385–395 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.040

    Article  CAS  Google Scholar 

  49. Singh, J., Dhaliwal, A.S.: Water retention and controlled release of KCl by using microwave-assisted green synthesis of xanthan gum-cl-poly (acrylic acid)/AgNPs hydrogel nanocomposite. Polym. Bull. 77, 4867–4893 (2020). https://doi.org/10.1007/s00289-019-02990-x

    Article  CAS  Google Scholar 

  50. Chuang, Y.P., Hong, J.L.: Triple cross-linked network derived from xanthan gum/sodium poly (acrylic acid)/metal ion as a functional binder of the sulfur cathode in lithium-sulfur batteries. ACS Appl. Energy Mater. 4, 10213–10221 (2021). https://doi.org/10.1021/acsaem.1c02054

    Article  CAS  Google Scholar 

  51. Li, M., Zhao, Y., Bian, S., Qiao, J., Hu, X., Yu, S.: A green, environment-friendly, high-consolidation-strength composite dust suppressant derived from xanthan gum. Environ. Sci. Pollut. Res. 29, 7489–7502 (2022). https://doi.org/10.1007/s11356-021-16258-3

    Article  Google Scholar 

  52. Liu, Y., Zhu, Y., Wang, Y., Quan, Z., Zong, L., Wang, A.: Synthesis and application of eco-friendly superabsorbent composites based on xanthan gum and semi-coke. Int. J. Biol. Macromol. 179, 230–238 (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.007

    Article  CAS  Google Scholar 

  53. Chi, M., Liu, C., Shen, J., Dong, Z., Yang, Z., Wang, L.: Antibacterial superabsorbent polymers from Tara gum grafted poly (acrylic acid) embedded silver particles. Polymers 10, 945 (2018). https://doi.org/10.3390/polym10090945

    Article  CAS  Google Scholar 

  54. Zhong, H., He, J., Zhang, L.: Crosslinkable aqueous binders containing Arabic gum-grafted-poly (acrylic acid) and branched polyols for Si anode of lithium-ion batteries. Polymer 215, 123377 (2021). https://doi.org/10.1016/j.polymer.2020.123377

    Article  CAS  Google Scholar 

  55. Ibrahim, A.G., Elkony, A.M., El-Bahy, S.M.: Methylene blue uptake by gum arabic/acrylic amide/3-allyloxy-2-hydroxy-1-propanesulfonic acid sodium salt semi-IPN hydrogel. Int. J. Biol. Macromol. 186, 268–277 (2021). https://doi.org/10.1016/j.ijbiomac.2021.07.033

    Article  CAS  Google Scholar 

  56. Li, X., Wang, X., Sang, W., Liu, B., Peng, H., Zhang, W., Ma, G.: Preparation and anti-leakage performances of superabsorbent composite based on ablmoschus manihot gum and microcrystalline cellulose. J. Environ. Chem. Eng. 10, 107644 (2022). https://doi.org/10.1016/j.jece.2022.107644

    Article  CAS  Google Scholar 

  57. Sharma, B., Thakur, S., Mamba, G., Gupta, R.K., Gupta, V.K., Thakur, V.K.: Titania modified gum tragacanth based hydrogel nanocomposite for water remediation. J. Environ. Chem. Eng. 9, 104608 (2021). https://doi.org/10.1016/j.jece.2020.104608

    Article  CAS  Google Scholar 

  58. Özkahraman, B., Özbaş, Z.: Removal of Al(III) ions using gellan gum-acrylic acid double network hydrogel. J. Polym. Environ. 28, 689–698 (2020). https://doi.org/10.1007/s10924-019-01636-3

    Article  CAS  Google Scholar 

  59. Goddeti, S.M.R., Maity, A., Ray, S.S.: Polypyrrole-coated gum ghatti-grafted poly (acrylamide) composite for the selective removal of hexavalent chromium from waste water. Int. J. Biol. Macromol. 164, 2851–2860 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.324

    Article  CAS  Google Scholar 

  60. Abdelmonem, I.M., Metwally, E., Siyam, T.E., El-Nour, F.A., Mousa, A.R.M.: Radiation synthesis of starch-acrylic acid–vinyl sulfonic acid/multiwalled carbon nanotubes composite for the removal of 134Cs and 152+ 154Eu from aqueous solutions. J. Radioanal. Nucl. Chem. 319, 1145–1157 (2019). https://doi.org/10.1007/s10967-018-6392-1

    Article  CAS  Google Scholar 

  61. Drabczyk, A., Kudłacik-Kramarczyk, S., Tyliszczak, B., Rudnicka, K., Urbaniak, M., Michlewska, S., Królczykd, J.B., Gajdae, K.P., Pielichowskif, K.: Measurement methodology toward determination of structure-property relationships in acrylic hydrogels with starch and nanogold designed for biomedical applications. Measurement 156, 107608 (2020). https://doi.org/10.1016/j.measurement.2020.107608

  62. Baghbadorani, N.B., Behzad, T., Etesami, N., Heidarian, P.: Removal of Cu2+ ions by cellulose nanofibers-assisted starch-g-poly (acrylic acid) superadsorbent hydrogels. Compos. B. Eng. 176, 107084 (2019). https://doi.org/10.1016/j.compositesb.2019.107084

    Article  CAS  Google Scholar 

  63. Motamedi, E., Motesharezedeh, B., Shirinfekr, A., Samar, S.M.: Synthesis and swelling behavior of environmentally friendly starch-based superabsorbent hydrogels reinforced with natural char nano/micro particles. J. Environ. Chem. Eng. 8, 103583 (2020). https://doi.org/10.1016/j.jece.2019.103583

  64. Chaudhuri, S.D., Mandal, A., Dey, A., Chakrabarty, D.: Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel. Appl. Clay Sci. 185, 105405 (2020). https://doi.org/10.1016/j.clay.2019.105405

    Article  CAS  Google Scholar 

  65. Kazeminejadfard, F., Hojjati, M.R.: Preparation of superabsorbent composite based on acrylic acid-hydroxypropyl distarch phosphate and clinoptilolite for agricultural applications. J. Appl. Polym. Sci. 136, 47365 (2018). https://doi.org/10.1002/app.47365

    Article  CAS  Google Scholar 

  66. Wei, H., Wang, H., Chu, H., Li, J.: Preparation and characterization of slow-release and water-retention fertilizer based on starch and halloysite. Int. J. Biol. Macromol. 133, 1210–1218 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.183

    Article  CAS  Google Scholar 

  67. Nezami, S., Sadeghi, M.: pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems. Polym. Bull. 77, 1255–1279 (2020). https://doi.org/10.1007/s00289-019-02801-3

    Article  CAS  Google Scholar 

  68. Iqbal, S., Nadeem, S., Bano, R.,. Bahadur, A., Ahmad, Z., Javed, M., Asif A., Qasier, A., Laref A., Shoaib, M., Liu, G., Qayyum A.: Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging application. J. Appl. Polym. Sci. 138, 50604 (2021). https://doi.org/10.1002/app.50604

  69. Saberi, A., Alipour, E., Sadeghi, M.: Superabsorbent magnetic Fe3O4-based starch-poly (acrylic acid) nanocomposite hydrogel for efficient removal of dyes and heavy metal ions from water. J. Polym. Res. 26, 1–14 (2019). https://doi.org/10.1007/s10965-019-1917-z

    Article  CAS  Google Scholar 

  70. Arayaphan, J., Maijan, P., Boonsuk, P., Chantarak, S.: Synthesis of photodegradable cassava starch-based double network hydrogel with high mechanical stability for effective removal of methylene blue. Int. J. Biol. Macromol. 168, 875–886 (2019). https://doi.org/10.1016/j.ijbiomac.2020.11.166

    Article  CAS  Google Scholar 

  71. Sarmah, D., Karak, N.: Double network hydrophobic starch-based amphobic hydrogel as an effective adsorbent for cationic and anionic dyes. Carbohydr. Polym. 242, 116320 (2020). https://doi.org/10.1016/j.carbpol.2020.116320

    Article  CAS  Google Scholar 

  72. Moharrami, P., Motamedi, E.: Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresour. Technol. 313, 123661 (2020). https://doi.org/10.1016/j.biortech.2020.123661

    Article  CAS  Google Scholar 

  73. Chen, L., Zhu, Y., Cui, Y., Dai, R., Shan, Z., Chen, H.: Fabrication of starch-based high-performance adsorptive hydrogels using a novel effective pretreatment and adsorption for cationic methylene blue dye: behavior and mechanism. Chem. Eng. J. 405, 126953 (2021). https://doi.org/10.1016/j.cej.2020.126953

    Article  CAS  Google Scholar 

  74. Salimi, M., Motamedi, E., Motesharezedeh, B., Hosseini, H.M., Alikhani, H.A.: Starch-g-poly (acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. J. Environ. Chem. Eng. 8, 103765 (2020). https://doi.org/10.1016/j.jece.2020.103765

    Article  CAS  Google Scholar 

  75. Bahadoran Baghbadorani, N., Behzad, T., Karimi Darvanjooghi, M.H., Etesami, N.: Modelling of water absorption kinetics and biocompatibility study of synthesized cellulose nanofiber-assisted starch-graft-poly (acrylic acid) hydrogel nanocomposites. Cellulose 27, 9927–9945 (2020). https://doi.org/10.1007/s10570-020-03511-0

    Article  CAS  Google Scholar 

  76. Xun, J., Lou, T., Xing, J., Zhang, W., Xu, Q., Peng, J., Wang, X.: Synthesis of a starch–acrylic acid–chitosan copolymer as flocculant for dye removal. J. Appl. Polym. Sci. 136, 47437 (2019). https://doi.org/10.1002/app.47437

    Article  CAS  Google Scholar 

  77. Dragan, E.S., Loghin, D.F.A.: Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu2+, Ni2+, and Co2+ ions. Int. J. Biol. Macromol. 120, 1872–1883 (2018). https://doi.org/10.1016/j.ijbiomac.2018.10.007

    Article  CAS  Google Scholar 

  78. Sethi, S., Thakur, S., Kaith, B.S., Sharma, N., Ansar, S., Pandey, S., Kuma, V.: Biopolymer starch-gelatin embedded with silver nanoparticle–based hydrogel composites for antibacterial application. Biomass Conv. Bioref., 1–22 (2022). https://doi.org/10.1007/s13399-022-02437-w

  79. Zhao, B., Jiang, H., Lin, Z., Xu, S., Xie, J., Zhang, A.: Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 224, 115022 (2019). https://doi.org/10.1016/j.carbpol.2019.115022

    Article  CAS  Google Scholar 

  80. Tan, J., Xie, S., Wang, G., Yu, C.W., Zeng, T., Cai, P., Huang, H.: Fabrication and optimization of the thermo-sensitive hydrogel carboxymethyl cellulose/poly (N-isopropylacrylamide-co-acrylic acid) for U (VI) removal from aqueous solution. Polymers 12, 151 (2020). https://doi.org/10.3390/polym12010151

    Article  CAS  Google Scholar 

  81. Nath, J., Dolui, S.K.: Synthesis of carboxymethyl cellulose-g-poly (acrylic acid)/LDH hydrogel for in vitro controlled release of vitamin B12. Appl. Clay Sci. 155, 65–73 (2018). https://doi.org/10.1016/j.clay.2018.01.004

    Article  CAS  Google Scholar 

  82. Tamahkar, E., Bakhshpour, M., Denizli, A.: Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J. Biomater. Sci., Polym. Ed. 30, 450–461 (2019). https://doi.org/10.1080/09205063.2019.1580665

  83. Li, Y., Zhang, H., Ni, S., Xiao, H.: In situ synthesis of conductive nanocrystal cellulose/polypyrrole composite hydrogel based on semi-interpenetrating network. Mater. Lett. 232, 175–178 (2018). https://doi.org/10.1016/j.matlet.2018.08.115

    Article  CAS  Google Scholar 

  84. Jafarigol, E., Salehi, M.B., Mortaheb, H.R.: Preparation and assessment of electro-conductive poly (acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity. Chem. Eng. Res. Des. 162, 74–84 (2020). https://doi.org/10.1016/j.cherd.2020.07.020

    Article  CAS  Google Scholar 

  85. Dai, H., Zhang, Y., Ma, L., Zhang, H., Huang, H.: Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohydr. Polym. 215, 366–376 (2019). https://doi.org/10.1016/j.carbpol.2019.03.090

    Article  CAS  Google Scholar 

  86. Toledo, P.V., Limeira, D.P., Siqueira, N.C., Petri, D.F.: Carboxymethyl cellulose/poly (acrylic acid) interpenetrating polymer network hydrogels as multifunctional adsorbents. Cellulose 26, 597–615 (2019). https://doi.org/10.1007/s10570-018-02232-9

    Article  CAS  Google Scholar 

  87. Zaharia, A., Radu, A.L., Iancu, S., Florea, A.M., Sandu, T., Minca, I., Oprisan, V.F., Logob, O., Tedorescuc, M., Orcid, S., Lordache, T.V.: Bacterial cellulose-poly (acrylic acid-co-N, -methylene-bis-acrylamide) interpenetrated networks for the controlled release of fertilizers. RSC Adv. 8, 17635–17644 (2018). https://doi.org/10.1039/C8RA01733F

  88. Liu, Y., Zhu, Y., Mu, B.: Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent. Polym. Bull. 79, 935–953 (2022). https://doi.org/10.1007/s00289-021-03545-9

    Article  CAS  Google Scholar 

  89. Shahzamani, M., Taheri, S., Roghanizad, A., Naseri, N., Dinari, M.: Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int. J. Biol. Macromol. 147, 187–193 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.038

    Article  CAS  Google Scholar 

  90. Wang, Z., Ning, A., Xie, P., Gao, G., Xie, L., Li, X., Song, A.: Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr. Polym. 157, 48–56 (2017). https://doi.org/10.1016/j.carbpol.2016.09.070

    Article  CAS  Google Scholar 

  91. Adair, A., Kaesaman, A., Klinpituksa, P.: Superabsorbent materials derived from hydroxyethyl cellulose and bentonite: preparation, characterization and swelling capacities. Polym. Test. 64, 321–329 (2017). https://doi.org/10.1016/j.polymertesting.2017.10.018

    Article  CAS  Google Scholar 

  92. Cheng, S., Liu, X., Zhen, J., Lei, Z.: Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr. Polym. 225, 115214 (2019). https://doi.org/10.1016/j.carbpol.2019.115214

    Article  CAS  Google Scholar 

  93. Shin, D., Park, H., Paik, U.: Cross-linked poly (acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem. Commun. 77, 103–106 (2017). https://doi.org/10.1016/j.elecom.2017.02.018

    Article  CAS  Google Scholar 

  94. Rodrigues, F.H., de C Magalhães, C.E., Medina, A.L., Fajardo, A.R.: Hydrogel composites containing nanocellulose as adsorbents for aqueous removal of heavy metals: design, optimization, and application. Cellulose 26, 9119–9133 (2019). https://doi.org/10.1007/s10570-019-02736-y

  95. Zhang, L., Tang, S., He, F., Liu, Y., Mao, W., Guan, Y.: Highly efficient and selective capture of heavy metals by poly (acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 378, 122215 (2019). https://doi.org/10.1016/j.cej.2019.122215

    Article  CAS  Google Scholar 

  96. Gizawy, M.A., Shamsel-Din, H.A., Abdelmonem, I.M., Ibrahim, M.I., Mohamed, L.A., Metwally, E.: Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Int. J. Biol. Macromol. 163, 79–86 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.249

    Article  CAS  Google Scholar 

  97. Zhang, L., Tang, S., Guan, Y.: Excellent adsorption–desorption of ammonium by a poly (acrylic acid)-grafted chitosan and biochar composite for sustainable agricultural development. ACS Sustainable Chem. Eng. 8, 16451–16462 (2020). https://doi.org/10.1021/acssuschemeng.0c05070

    Article  CAS  Google Scholar 

  98. Bazzazzadeh, A., Dizaji, B.F., Kianinejad, N., Nouri, A., Irani, M.: Fabrication of poly (acrylic acid) grafted-chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells. Int. J. Pharm. 587, 119674 (2020). https://doi.org/10.1016/j.ijpharm.2020.119674

    Article  CAS  Google Scholar 

  99. Duceac, I.A., Verestiuc, L., Dimitriu, C.D., Maier, V., Coseri, S.: Design and preparation of new multifunctional hydrogels based on chitosan/acrylic polymers for drug delivery and wound dressing applications. Polymers 12, 1473 (2020). https://doi.org/10.3390/polym12071473

    Article  CAS  Google Scholar 

  100. Chopra, L., Thakur, K.K., Chohan, J.S., Sharma, S., Ilyas, R.A., Asyraf, M.R.M., Zakaria, S.Z.S.: Comparative drug release investigations for diclofenac sodium drug (DS) by chitosan-based grafted and crosslinked copolymers. Materials 15, 2404 (2022). https://doi.org/10.3390/ma15072404

    Article  CAS  Google Scholar 

  101. Chi, H., Qiao, Y., Wang, B., Hou, Y., Li, Q., Li, K., Liu, Z.: Swelling, thermal stability, antibacterial properties enhancement on composite hydrogel synthesized by chitosan-acrylic acid and ZnO nanowires. Polym.-Plast. Technol. Mater. 58, 1649–1661 (2019). https://doi.org/10.1080/25740881.2018.1563138

    Article  CAS  Google Scholar 

  102. Tanveer, M., Farooq, A., Ata, S., Bibi, I., Sultan, M., Iqbal, M., Jaben, S., Gull, N., Atiflsam, R., Samiah, H., Al-Mijalli, S.H.: Aluminum nanoparticles, chitosan, acrylic acid and vinyltrimethoxysilane based hybrid hydrogel as a remarkable water super-absorbent and antimicrobial activity. Surf. Interfaces. 25, 101285 (2021). https://doi.org/10.1016/j.surfin.2021.101285

    Article  CAS  Google Scholar 

  103. Yildirim, A., Bulut, Y.: Adsorption behaviors of malachite green by using crosslinked chitosan/polyacrylic acid/bentonite composites with different ratios. Environ. Technol. Innov. 17, 100560 (2020). https://doi.org/10.1016/j.eti.2019.100560

    Article  Google Scholar 

  104. Bahal, M., Kaur, N., Sharotri, N., Sud, D.: Investigations on amphoteric chitosan/TiO2 bionanocomposites for application in visible light induced photocatalytic degradation. Adv. Polym. Technol. 2345631 (2019). https://doi.org/10.1155/2019/2345631

  105. Tang, H., Liu, Y., Li, B., Zhu, L., Tang, Y.: Preparation of chitosan graft polyacrylic acid/graphite oxide composite and the study of its adsorption properties of cationic dyes. Polym. Sci. A. 62, 272–283 (2020). https://doi.org/10.1134/S0965545X20030141

    Article  CAS  Google Scholar 

  106. Zhang, C., Dai, Y., Wu, Y., Lu, G., Cao, Z., Cheng, J., Wanga, K., Hanga, H., Xiaa, Y., Wena, X., Maa, W., Liuab, C., Wang, Z.: Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr. Polym. 234, 115882 (2020). https://doi.org/10.1016/j.carbpol.2020.115882

    Article  CAS  Google Scholar 

  107. Wang, W., Bai, H., Zhao, Y., Kang, S., Yi, H., Zhang, T., Song, S.: Synthesis of chitosan cross-linked 3D network-structured hydrogel for methylene blue removal. Int. J. Biol. Macromol. 141, 98–107 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.225

    Article  CAS  Google Scholar 

  108. Ghazy, O.A., Khalil, S.A., Senna, M.M.: Synthesis of montmorillonite/chitosan/ammonium acrylate composite and its potential application in river water flocculation. Int. J. Biol. Macromol. 163, 1529–1537 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.022

    Article  CAS  Google Scholar 

  109. El-Kousy, S.M., El-Shorbagy, H.G., Abd El-Ghaffar, M.A.: Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. Mater. Chem. Phys. 254, 123236 (2020). https://doi.org/10.1016/j.matchemphys.2020.123236

    Article  CAS  Google Scholar 

  110. Gao, Y., Qiu, X., Wang, X., Gu, A., Zhang, L., Chen, X., Yu, Z.: Chitosan-g-poly (acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 16274–16283 (2019). https://doi.org/10.1021/acssuschemeng.9b03307

    Article  CAS  Google Scholar 

  111. Abdelrahman, M.S., Nassar, S.H., Mashaly, H., Mahmoud, S., Maamoun, D., El-Sakhawy, M., Kamel, S.: Studies of polylactic acid and metal oxide nanoparticles-based composites for multifunctional textile prints. Coatings 10, 58 (2020). https://doi.org/10.3390/coatings10010058

    Article  CAS  Google Scholar 

  112. Zhou, X., Essawy, H.A., Mohamed, M.F., Ibrahim, H.S., Ammar, N.S.: Grafting polymerization of acrylic acid onto chitosan-cellulose hybrid and application of the graft as highly efficient ligand for elimination of water hardness: adsorption isotherms, kinetic modeling and regeneration. J. Environ. Chem. Eng. 6, 2137–2147 (2018). https://doi.org/10.1016/j.jece.2018.03.022

    Article  CAS  Google Scholar 

  113. Nagarpita, M.V., Roy, P., Shruthi, S.B., Sailaja, R.R.N.: Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes. Int. J. Biol. Macromol. 102, 1226–1240 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.099

    Article  CAS  Google Scholar 

  114. Verma, A., Thakur, S., Mamba, G., Gupta, R.K., Thakur, P., Thakur, V.K.: Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 148, 1130–1139 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.142

    Article  CAS  Google Scholar 

  115. Abdelmonem, I.M., Metwally, E., Siyam, T.E., El-Nour, F.A., Mousa, A.R.M.: Adsorption of 60Co from aqueous solution onto alginate–acrylic acid–vinylsulfonic acid/multiwalled carbon nanotubes composite. Polym. Bull. 77, 4631–4653 (2020). https://doi.org/10.1007/s00289-019-02978-7

    Article  CAS  Google Scholar 

  116. Mohamadinia, P., Anarjan, N., Jafarizadeh-Malmiri, H.: Preparation and characterization of sodium alginate/acrylic acid composite hydrogels conjugated to silver nanoparticles as an antibiotic delivery system. Green Process. Synth. 10, 860–873 (2021). https://doi.org/10.1515/gps-2021-0081

    Article  CAS  Google Scholar 

  117. Kenawy, E.R., Azaam, M.M., El-nshar, E.M.: Sodium alginate-g-poly (acrylic acid-co-2-hydroxyethyl methacrylate)/montmorillonite superabsorbent composite: preparation, swelling investigation and its application as a slow-release fertilizer. Arab. J. Chem. 12, 847–856 (2019). https://doi.org/10.1016/j.arabjc.2017.10.013

    Article  CAS  Google Scholar 

  118. Subhan, H., Alam, S., Shah, L.A., Ali, M.W., Farooq, M.: Sodium alginate grafted poly (N-vinyl formamide-co-acrylic acid)-bentonite clay hybrid hydrogel for sorptive removal of methylene green from wastewater. Colloids Surf. A: Physicochem. Eng. Asp. 611, 125853 (2021). https://doi.org/10.1016/j.colsurfa.2020.125853

    Article  CAS  Google Scholar 

  119. Makhado, E., Pandey, S., Modibane, K.D., Kang, M., Hato, M.J.: Sequestration of methylene blue dye using sodium alginate poly (acrylic acid) ZnO hydrogel nanocomposite: kinetic, isotherm, and thermodynamic investigations. Int. J. Biol. Macromol. 162, 60–73 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.143

    Article  CAS  Google Scholar 

  120. Ohm, Y., Pan, C., Ford, M.J., Huang, X., Liao, J., Majidi, C.: An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron 4, 185–192 (2021). https://doi.org/10.1038/s41928-021-00545-5

    Article  CAS  Google Scholar 

  121. Tang, J., Huang, J., Zhou, G., Liu, S.: Versatile fabrication of ordered cellular structures double network composite hydrogel and application for cadmium removal. J. Chem. Thermodyn. 141, 105918 (2020). https://doi.org/10.1016/j.jct.2019.105918

    Article  CAS  Google Scholar 

  122. Liu, Y., Zhang, L., Tang, Y., Zhu, L.: Study on the preparation and adsorption properties of sodium alginate graft polyacrylic acid/graphite oxide composite hydrogel. Polym. Sci. Ser. A 63, 133–142 (2021). https://doi.org/10.1134/S0965545X21020061

    Article  CAS  Google Scholar 

  123. Mozaffari, T., Vanashi, A.K., Ghasemzadeh, H.: Nanocomposite hydrogel based on sodium alginate, poly (acrylic acid), and tetraamminecopper (II) sulfate as an efficient dye adsorbent. Carbohydr. Polym. 267, 118182 (2021). https://doi.org/10.1016/j.carbpol.2021.118182

    Article  CAS  Google Scholar 

  124. Shen, Y., Wang, H., Li, W., Liu, Z., Liu, Y., Wei, H., Li, J.: Synthesis and characterization of double-network hydrogels based on sodium alginate and halloysite for slow release fertilizers. Int. J. Biol. Macromol. 164, 557–565 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.154

    Article  CAS  Google Scholar 

  125. Wang, X., Zhang, H., He, Q., Xing, H., Feng, K., Guo, F., Wang, W.: Core-shell alginate beads as green reactor to synthesize grafted composite beads to efficiently boost single/co-adsorption of dyes and Pb (II). Int. J. Biol. Macromol. 206, 10–20 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.091

    Article  CAS  Google Scholar 

  126. Kurdtabar, M., Rezanejade Bardajee, G.: Drug release and swelling behavior of magnetic iron oxide nanocomposite hydrogels based on poly (acrylic acid) grafted onto sodium alginate. Polym. Bull. 77, 3001–3015 (2020). https://doi.org/10.1007/s00289-019-02894-w

    Article  CAS  Google Scholar 

  127. Godiya, C.B., Cheng, X., Li, D., Chen, Z., Lu, X.: Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 364, 28–38 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.076

    Article  CAS  Google Scholar 

  128. Pakdel, P.M., Peighambardoust, S.J., Arsalani, N., Aghdasinia, H.: Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly (acrylic acid-co-itaconic acid) nanocomposite hydrogel. Environ. Res. 212, 113201 (2022). https://doi.org/10.1016/j.envres.2022.113201

    Article  CAS  Google Scholar 

  129. El Assimi, T., Lakbita, O., El Meziane, A., Khouloud, M., Dahchour, A., Beniazza, R., Raihane, M., Boulf, D., Lahcini, M.: Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. Int. J. Biol. Macromol. 161, 492–502 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.074

    Article  CAS  Google Scholar 

  130. Li, S.N., Li, B., Yu, Z.R., Gong, L.X., Xia, Q.Q., Feng, Y., Zhou, Y., Jia, D., Tang, L.C.: Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance. Compos. Sci. Technol. 195, 108173 (2020). https://doi.org/10.1016/j.compscitech.2020.108173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Avalos Belmontes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avalos Belmontes, F., Castañeda-Flores, M.E., González, F.J., Garcia-Lobato, M.A., Téllez-Rosas, M.M. (2023). Biodegradable Acrylic Polymers and Nanocomposites. In: Avalos Belmontes, F., González, F.J., López-Manchado, M.Á. (eds) Green-Based Nanocomposite Materials and Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18428-4_8

Download citation

Publish with us

Policies and ethics