Skip to main content
Log in

Selenium-Containing Nanobiocomposites of Fungal Origin Reduce the Viability and Biofilm Formation of the Bacterial Phytopathogen Clavibacter michiganensis subsp. sepedonicus

  • Nanobiology
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The effect of selenium biocomposites obtained from medical macrobasidiomycetes Ganoderma lucidum, Grifola umbellata, Laetiporus sulphureus, Lentinula edodes, and Pleurotus ostreatus on the viability of the phytopathogenic gram-positive bacteria Clavibacter michiganensis subsp. sepedonicus (Cms) and its ability to form biofilms has been studied. A decrease in the viability of the bacterial cells as a result of incubation with biocomposites is shown. The determining effect of the selenium component of the composites on the studied biological activity is investigated. The dependence of the antimicrobial action of selenium-containing experimental samples on the biological species of the fungus is revealed. Biocomposites based on extracellular metabolites of Lentinula edodes and Ganoderma lucidum possess maximal activity. When biopolymer samples of fungal origin are added to the bacterial suspension, the ability of Cms to form biofilms differs depending on the type of biocomposite; it decreases significantly in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Maistrov, “Antioxidant-antiradical and thioldisulfide systems of pedigree bulls under the influence of complex of biological active substances,” Sel’skokhoz. Biol., No. 2, 64–68 (2006).

    Google Scholar 

  2. O. A. Gromova, “Selenium—impressive results and prospects of application,” Trudn. Patsient 5 (14), 25–30 (2007).

    Google Scholar 

  3. F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y. Zhang, Y. Li, and W. Zheng, “Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles,” Int. J. Nanomed. 7, 835–844 (2012).

    Article  Google Scholar 

  4. B. Jansson, in Metal Ions in Biological Systems, Ed. by H. Sigel (Marcel Dekker, New York, 1980), Vol. 10, pp. 281–311.

  5. C. Ip and G. White, “Mammary cancer chemoprevention by inorganic and organic selenium: single agent treatment or in combination with vitamin E and their effects on in vitro immune functions,” Carcinogenesis 8, 1763–1766 (1987).

    Article  Google Scholar 

  6. M. P. Rayman, “Selenium in cancer prevention: a review of the evidence and mechanism of action,” Proc. Nutr. Soc. 64, 527–542 (2005).

    Article  Google Scholar 

  7. J. Yang, K. Huang, S. Qin, X. Wu, Z. Zhao, and F. Chen, “Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli,” Dig. Dis. Sci. 54, 246–254 (2009).

    Article  Google Scholar 

  8. Ph. A. Tran and Th. J. Webster, “Selenium nanoparticles inhibit Staphylococcus aureus growth,” Int. J. Nanomed. 6, 1553–1558 (2011).

    Google Scholar 

  9. A. A. Razak and E. Tantawy, “Influence of selenium on the efficiency of fungicide action against certain fungi,” Biol. Trace Elem. Res. 28, 47–56 (1991).

    Article  Google Scholar 

  10. S. E. Ramadan, A. A. Razak, Y. A. Yousseff, and N. M. Sedky, “Selenium metabolism in a strain of Fusarium,” Biol. Trace Elem. Res. 18, 161–170 (1988).

    Article  Google Scholar 

  11. E. T. Thompson-Eagl, W. T. Frankenberger, and U. Karlson, “Volatization of selenium by Alternaria alternata,” Appl. Environ. Microbiol. 55, 1406–1413 (1989).

    Google Scholar 

  12. G. I. Chalenko, N. G. Gerasimova, N. I. Vasyukova, O. L. Ozeretskovskaya, L. V. Kovalenko, and G. E. Folmanis, “Nanoselen—systemics elicitor of defense and growth reaction of potato tubers,” Agro XXI, No. 10, 31–33 (2010).

    Google Scholar 

  13. O. L. Ozeretskovskaya, “Inducing plant resistance by nutrient elicitors of phytopathogens,” Prikl. Biokhim. Mikrobiol. 30, 325–339 (1994).

    Google Scholar 

  14. I. N. Nikonov, L. I. Ivanov, L. V. Kovalenko, and G. E. Folmanis, “Influence of nano-dimensional selenium on agricultural cultures growth,” Perspekt. Mater., No. 4, 54–57 (2009).

    Google Scholar 

  15. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. 104, 9111–9117 (2000).

    Article  Google Scholar 

  16. G. Xi, K. Xiong, Q. Zhao, R. Zhang, H. Zhang, and Y. Qian, “Nucleation-dissolutionrecrystallization: a new growth mechanism for t-selenium nanotubes,” Cryst. Growth Des. 6, 577–582 (2006).

    Article  Google Scholar 

  17. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina, “‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants,” Acta Natur. 6, 35–44 (2014).

    Google Scholar 

  18. S. Malhotra, N. Jha, and K. Desai, “A superficial synthesis of selenium nanospheres using wet chemical approach,” Int. J. Nanotechnol. Appl. 3, 7–14 (2014).

    Google Scholar 

  19. C. Dwivedi, C. P. Shah, K. Singh, M. Kumar, and P. N. Bajaj, “An organic acid-induced synthesis and characterization of selenium nanoparticles,” J. Nanotechnol. 2011, 651971 (2011).

    Article  Google Scholar 

  20. G. Sharma, A. R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J. S. Nam, and S. S. Lee, “Biomoleculemediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract,” Molecules 19, 2761–2770 (2014).

    Article  Google Scholar 

  21. S. Dhanjal and S. S. Cameotra, “Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil,” Microbiol. Cell Fact. 9, 52 (2010).

    Article  Google Scholar 

  22. T. Wang, L. Yang, B. Zhang, and J. Liu, “Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor,” Colloids Surf., B 80, 94–102 (2010).

    Article  Google Scholar 

  23. G. M. Khiralla and B. A. El-Deeb, “Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens,” LWT-Food Sci. Technol. 63, 1001–1007 (2015).

    Article  Google Scholar 

  24. S. K. Torres, V. L. Campos, C. G. León, S. M. Rodríguez-Llamazares, S. M. Rojas, M. González, C. Smith, and M. A. Mondaca, “Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity,” J. Nanopart. Res. 4, 1236 (2012).

    Article  Google Scholar 

  25. S. Dwivedi, A. A. AlKhedhairy, A. Maqusood, and J. Musarrat, “Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay,” PLoS One 8, 574–604 (2013).

    Google Scholar 

  26. P. Eszenyi, A. Sztrik, B. Babka, and J. Prokisch, “Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria,” Int. J. Biosci. Biochem. Bioinform. 1, 148–152 (2011).

    Google Scholar 

  27. H. Hariharan, N. A. Al-Dhabi, P. Karuppiah, and S. K. Rajaram, “Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection,” Chalcogenide Lett. 9, 509–515 (2012).

    Google Scholar 

  28. B. Zare, S. Babaie, N. Setayesh, and A. R. Shahverdi, “Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles,” Nanomed. J. 1, 13–19 (2013).

    Google Scholar 

  29. J. Sarkar, P. Dey, S. Saha, and K. Acharya, “Mycosynthesis of selenium nanoparticles,” Micro Nano Lett. 6, 599–602 (2011).

    Article  Google Scholar 

  30. A. V. Papkina, A. I. Perfil’eva, M. A. Zhivet’ev, G. B. Borovskii, I. A. Graskova, M. V. Lesnichaya, I. V. Klimenkov, B. G. Sukhov, and B. A. Trofimov, “Effect of selenium and arabinogalactan nanocomposite on viability of the phytopathogen Clavibacter michiganensis subsp. sepedonicus,” Dokl. Biol. Sci. 461, 89–91 (2015).

    Article  Google Scholar 

  31. A. V. Papkina, A. I. Perfil’eva, M. A. Zhivet’ev, G. B. Borovskii, I. A. Graskova, M. V. Lesnichaya, I. V. Klimenkov, B. G. Sukhov, and B. A. Trofimov, “Complex effects of selenium-arabinogalactan nanocomposite on both phytopathogen Clavibacter michiganensis subsp. sepedonicus and potato plants,” Nanotechnol. Russ. 10, 484 (2015).

    Article  Google Scholar 

  32. A. I. Perfil’eva, S. M. Motyleva, I. V. Klimenkov, I. A. Graskova, B. G. Sukhov, and B. A. Trofimov, “Development of antimicrobial nano-selenium biocomposite for protecting potatoes from bacterial phytopathogens,” Nanotechnol. Russ. 12, 553 (2017).

    Article  Google Scholar 

  33. A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Sidorov, M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, I. V. Klimenkov, and B. G. Sukhov, “Synthesis of selenium and silver nanobiocomposites and their influence on phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus,” Russ. Chem. Bull. 67, 157 (2018).

    Article  Google Scholar 

  34. O. M. Tsivileva and A. I. Perfileva, “Selenium compounds biotransformed by mushrooms: not only dietary sources, but also toxicity mediators,” Curr. Nutrit. Food Sci. 13, 82–96 (2017).

    Article  Google Scholar 

  35. B. I. Drevko, R. I. Drevko, V. A. Antipov, B. A. Chernukha, and A. N. Yakovlev, “A remedy for the treatment and prevention of infectious diseases and poisoning of animals and birds, increasing their productivity and safety,” RF Patent No. 2171110, Byull. Izobret. No. 21 (2001).

    Google Scholar 

  36. A. A. Shkel’, O. A. Mazhukina, and O. V. Fedotova, “Synthesis of new heterocyclic systems of thiopyranochromen-2-ones,” Khim. Geterotsikl. Soedin., No. 5, 789–791 (2011).

    Google Scholar 

  37. O. M. Tsivileva, A. I. Perfil’eva, Ya. B. Drevko, M. S. Malyshina, O. V. Koftin, D. N. Ibragimova, and O. V. Fedotova, “Antimicrobial activity of medicinal mushrooms’ isolates grown in the presence of organoselenium xenobiotics and 4-hydroxycoumarin derivatives,” Usp. Med. Mikol. 16, 181–186 (2016).

    Google Scholar 

  38. A. I. Perfil’eva, O. M. Tsivileva, D. N. Ibragimova, O. V. Koftin, O. V. Fedotova, “Effect of selenium-containing biocomposites based on Ganoderma mushroom isolates grown in the presence of oxopropyl-4-hydroxycoumarins, on bacterial phytopathogens,” Microbiology 86, 183–191 (2017).

    Article  Google Scholar 

  39. N. J. M. Roozen and J. W. L. van Vuurde, “Development of a semi-selective medium and an immunofluorescence colony-staining procedure for the detection of Clavibacter michiganensis subsp. sepedonicus in cattle manure slurry,” Netherlands J. Plant Pathol. 97, 321–334 (1991).

    Article  Google Scholar 

  40. D. E. Florack, B. Visser, P. M. de Vries, J. W. L. van Vuurde, and W. J. Stiekema, “Analysis of the toxicity of purothionins and hordothionins for plant pathogenic bacteria,” Netherlands J. Plant Pathol. 99, 259–268 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Perfileva.

Additional information

Original Russian Text © A.I. Perfileva, O.M. Tsivileva, O.V. Koftin, A.A. Anis’kov, D.N. Ibragimova, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfileva, A.I., Tsivileva, O.M., Koftin, O.V. et al. Selenium-Containing Nanobiocomposites of Fungal Origin Reduce the Viability and Biofilm Formation of the Bacterial Phytopathogen Clavibacter michiganensis subsp. sepedonicus. Nanotechnol Russia 13, 268–276 (2018). https://doi.org/10.1134/S1995078018030126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018030126

Navigation