Skip to main content
Log in

Malonate as an inhibitor of cyclosporine A-sensitive calcium-independent free oxidation in liver mitochondria induced by fatty acids

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of an inhibitor of succinate dehydrogenase malonate on cyclosporin A (CsA)-sensitive stimulation of respiration by α,ω-tetradecanedioic (TDA) and palmitic acids was investigated in experiments on rat liver mitochondria energized by the oxidation of succinate. It was found that malonate at a concentration of 0.2 mM halved the respiration rate in the presence of 50 μM 2,4-dinitrophenol (DNP), which causes maximal stimulation of respiration. However, malonate at this and even higher concentrations had no effect on mitochondrial respiration either in the resting state (state 2) or in the case of the two-fold stimulation of mitochondrial respiration by the protonophore uncoupler FCCP. TDA at a concentration of 0.5 mM, causing a twofold stimulation of mitochondrial respiration, in contrast to FCCP, had no effect on ΔΨ either in the absence or in the presence of malonate at a concentration below 0.5 mM. However, malonate at a concentration as low as 0.2 mM significantly reduced the activity of TDA. It was shown that malonate in liver mitochondria with similar effectiveness inhibits both TDA activity and respiration maximally stimulated by DNP. It was found that stimulation of respiration by TDA is not associated with the induction of nonspecific permeability of the inner membrane of the part of liver mitochondrial population. The specific uncoupling activity of palmtic acid (V U) and its specific components that characterize participation of the ATP/ADP antiporter (V Catr), aspartate/glutamate antiporter (V Glu), and cyclosporin-A-sensitive system (V CsA) in the palmitic acid-induced uncoupling were estimated. It was found that malonate at a concentration of 0.2 mM significantly reduces V U and V CsA but does not affect V Catr and V Glu. Based on these results we assumed that CsA-sensitive stimulation of liver mitochondrial respiration by TDA and palmitic acid without changing ΔΨ may be caused by the switching of part of the respiratory chain complexes to the mode of the maximal rate of the electron transfer occurring without the vector transport of H+ from the matrix to the intermembrane space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rolfe D.E., Brand M.D. 1997. The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci. Rep. 17, 9–16.

    Article  CAS  PubMed  Google Scholar 

  2. Mookerjee S.A., Divakaruni A.S., Jastroch M., Brand M.D. 2010. Mitochondrial uncoupling and lifespan. Mech. Ageing. Dev. 131, 463–472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Skulachev V.P. 1998. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta. 1363, 100–124.

    Article  CAS  PubMed  Google Scholar 

  4. Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2010. Membrannaja bioenergetika (Membrane bioenergetics). M.: Moscow University Press.

    Google Scholar 

  5. Dietrich M.O., Horvath T.L. 2010. The role of mitochondrial uncoupling in lifespan. Pfluegers. Arch. 459, 269–275.

    Article  CAS  Google Scholar 

  6. Papa S., Lorusso M., Di Paola M. 2006. Cooperativity and flexibility of the protonmotive activity of mitochondrial respiratory chain. Biochim. Biophys. Acta. 1757, 428–436.

    Article  CAS  PubMed  Google Scholar 

  7. Terada H. 1981. The interaction of highly active uncouplers with mitochondria. Biochim. Biophys. Acta. 639, 225–242.

    Article  CAS  PubMed  Google Scholar 

  8. Samartsev V.N., Kozhina O.V., Polischuk L.S. 2005. A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation. Biofizika (Rus.). 50, 660–667.

    CAS  Google Scholar 

  9. Motovilov K.A., Yurkov V.I., Volkov E.M., Yaguzhinskii L.S. 2009. Properties and new methods of nonequilibrium membrane bounded proton fraction research under conditions of proton pump activation. Biol. Membrany (Rus.). 26, 408–418.

    CAS  Google Scholar 

  10. Eremeev S.A., Motovilov K.A., Volkov E.M., Yaguzhinskii L.S. 2011. The new member of the class of membranotropic uncouplers — SkQ3. Biol. Membrany (Rus.). 28, 339–344.

    CAS  Google Scholar 

  11. Jastroch M., Divakaruni A.S., Moonkerjee S., Treberg J.R., Brand M.D. 2010. Mitochondrial proton and electron leaks. Essays Biochem. 47, 53–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mokhova E.N., Khailova L.S. 2005. Involvement of mitochondrial inner membrane anion carriers in the uncoupling effect of fatty acids. Biokhimia (Rus.). 70, 197–202.

    Google Scholar 

  13. Samartsev V.N., Marchik E.I., Shamagulova L.V. 2011. Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/ glutamate-antiporter. Biokhimia (Rus.). 76, 264–273.

    Google Scholar 

  14. Severin F.F., Severina I.I., Antonenko Y.N., Rokitskaya T.I., Cherepanov D.A., Mokhova E.N., Vyssokikh M.Y., Pustovidko A.V., Markova O.V., Yaguzhinsky L.S., Korshunova G.A., Sumbatyan N.V., Skulachev M.V., Skulachev V.P. 2010. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc. Natl. Acad. Sci. USA. 107, 663–668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Antonenko Y.N., Avetisyan A.V., Cherepanov D.A., Knorre D.A., Korshunova G.A., Markova O.V., Ojovan S.M., Perevoshchikova I.V., Pustovidko A.V., Rokitskaya T.I., Severina I.I., Simonyan R.A., Smirnova E.A., Sobko A.A., Sumbatyan N.V., Severin F.F., Skulachev V.P. 2011. Derivatives of rhodamine 19 as mild mitochondrial-targeted cationic uncouplers. J. Biol. Chem. 286, 17831–17840.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chalmers S., Caldwell S.T., Quin C., Prime T.A., James A.M., Caims A.G., Murphy M.P., McCarron J.G., Hartley R.C. 2012. Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J. Am. Chem. Soc. 134, 758–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rottenberg H. 1983. Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics. Proc. Natl. Acad. Sci. USA. 80, 3313–3317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Terada H., Shima O., Yoshida K., and Shinohara Y. 1990. Effects of the local anesthetic bupivacaine on oxidative phosphorilation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions. J. Biol. Chem. 265, 7837–7842.

    CAS  PubMed  Google Scholar 

  19. Van Dam K., Shinohara Y., Unami A., Yoshida K., Terada H. 1990. Slipping pumps or proton leaks in oxidative phosphorylation. The local anesthetic bupivacaine causes slip in cytochrome c oxidase of mitochondria. FEBS Lett. 277, 131–133.

    Article  PubMed  Google Scholar 

  20. Chien L.F., Brand M.D. 1996. The effect of chloroform on mitochondrial energy transduction. Biochem. J. 320, 837–845.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Markova O.V., Bondarenko D.I., Samartsev V.N. 1999. The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biokhimia (Rus.). 64, 679–685.

    Google Scholar 

  22. Rybakova S.R., Dubinin M.V., Samartsev V.N. 2013. The features of activation of free oxidation by α,ω-tetradecanedioic acid in liver mitochondria. Biol. membrany (Rus.). 30, 30–39.

    CAS  Google Scholar 

  23. Samartsev V.N., Dubinin M.V., Adakeeva S.I., Rybakova S.R., Marchik E.I. 2014. Calcium-independent uncoupling activity of palmitic acid in liver mitochondria is regulated by the ion fluxes causing the interconversion of ΔΨ and ΔpH across the inner membrane. Biol. membrany (Rus.). 31, 252–262.

    CAS  Google Scholar 

  24. Winge D.R. 2012. Sealing the mitochondrial respirasome. Mol. Cell. Biol. 32, 2647–2652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Azzu V., Parker N., Brand M.D. 2008. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochem. J. 413, 323–332.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bianchi C., Genova M.L., Parenti Castelli G., Lenaz G. 2004. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: Kinetic evidence using flux control analysis. J. Biol. Chem. 279, 36562–36569.

    Article  CAS  PubMed  Google Scholar 

  27. Rauckhorst A.J., Broekemeier K.M., Pfeiffer D.R. 2014. Regulation of the Ca2+-independent phospholipase A2 in liver mitochondria by changes in the energetic state. J. Lipid Res. 55, 826–836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kamo N., Muratsugu M., Hondoh R., Kobatake Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and reationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49, 105–121.

    Article  CAS  PubMed  Google Scholar 

  29. Dubinin M.V., Adakeeva S.I., Samartsev V.N. 2013. Long chain α,ω-dioic acids as inducers of cyclosporine A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. Biokhimia (Rus.). 78, 533–540.

    Google Scholar 

  30. Webb L. 1966. Enzyme and metabolic inhibitors. General principles of inhibition. M.: Mir.

    Google Scholar 

  31. Dubinin M.V., Vedernikov A.A., Khoroshavina E.I., Samartsev V.N. 2014. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in the media of varying ionic strength. Biokhimia (Rus.). 79, 724–731.

    Google Scholar 

  32. Petronilli V., Cola C., Massari S., Colonna R., Bernardi P. 1991. Physiological effectors modify voltage sensing by the cyclosporine A-sensitive permeability transition pore of mitochondria. J. Biol. Chem. 268, 21939–21945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Samartsev.

Additional information

Original Russian Text © S.I. Adakeeva, M.V. Dubinin, V.N. Samartsev, 2015, published in Biologicheskie Membrany, 2015, Vol. 32, No. 1, pp. 41–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adakeeva, S.I., Dubinin, M.V. & Samartsev, V.N. Malonate as an inhibitor of cyclosporine A-sensitive calcium-independent free oxidation in liver mitochondria induced by fatty acids. Biochem. Moscow Suppl. Ser. A 9, 107–115 (2015). https://doi.org/10.1134/S199074781501002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781501002X

Keywords

Navigation