Skip to main content
Log in

ω-Hydroxypalmitic and α,ω-Hexadecanedioic Acids As Activators of Free Respiration and Inhibitors of H2O2 Generation in Liver Mitochondria

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effects of palmitic acid (PA) and the products of its ω-oxidation–ω-hydroxypalmitic acid (HPA) and α,ω-hexadecanedioic acid (HDA)—on respiration in the absence of ATP synthesis and on the H2O2 generation were studied on isolated liver mitochondria energized by oxidation of succinate. It was shown that HPA stimulates respiration and reduces the difference in electrical potentials (Δψ) in mitochondria to the same extent as is typical for PA and classical protonophore uncouplers. Under similar conditions, the stimulation of mitochondrial respiration by HDA is not accompanied by a decrease in Δψ and is suppressed by 10 μM cyclosporin A. In this regard, HDA is considered as a “decoupling” agent that switches the complexes of the mitochondrial respiratory chain to the idle mode. It was established that in the presence of 20 mM potassium chloride in the sucrose incubation medium, stimulation of respiration by HPA (in contrast to PA and HDA) is suppressed by 60% in the case of pre-incubation with 3 mM magnesium chloride. We found that under these conditions, HPA at a concentration of 25 μM and above induces mitochondrial swelling, which is completely suppressed by magnesium chloride. HPA as an inducer of mitochondrial swelling is less efficient in the absence of potassium chloride than in its presence. We assume that, in contrast to PA and HDA, HPA produces its activating influence on free respiration in mitochondria owing to a combination of its ionophore and protonophore effects. It was established that PA, HDA, and HPA in concentrations equally stimulating respiration of mitochondria in state 2 are equally efficient in inhibiting the H2O2 generation. We conclude that the effects of these fatty acids as inhibitors of H2O2 generation in isolated liver mitochondria are due to stimulation of respiration in various ways and are not associated with a decrease in Δψ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Skulachev V.P. 1998. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta. 1363, 100–124.

    Article  CAS  Google Scholar 

  2. Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2010. Membrannaya bioenergetika (Membrane Bioenergtics). M., Moscow University Press.

  3. Mokhova E.N., Khailova L.S. 2005. Involvement of mitochondrial inner membrane anion carriers in the uncoupling effect of fatty acids. Biokhimia (Rus.).70, 197–202.

    Google Scholar 

  4. Egnatchik R.A., Leamy A.K., Noguchi Y., Shiota M., Young J.D. 2014. Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism. 63, 283–295.

    Article  CAS  Google Scholar 

  5. Severin F.F., Severina I.I., Antonenko Y.N., Rokitskaya T.I., Cherepanov D.A., Mokhova E.N., Vyssokikh M.Y., Pustovidko A.V., Markova O.V., Yaguzhinsky L.S., Korshunova G.A., Sumbatyan N.V., Skulachev M.V., Skulachev V.P. 2010. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc. Natl. Acad. Sci. USA. 107, 663–668.

    Article  CAS  Google Scholar 

  6. Samartsev V.N., Smirnov A.V., Zeldi I.P., Markova O.V., Mokhova E.N., Skulachev V.P. 1997. Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochim. Biophys. Acta. 1339, 251–257.

    Article  Google Scholar 

  7. Samartsev V.N., Marchik E.I., Shamagulova L.V. 2011. Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/glutamate-antiporter. Biokhimia (Rus.). 76, 264–273.

    Google Scholar 

  8. Samartsev V.N., Dubinin M.V., Adakeeva S.I., Rybakova S.R., Marchik E.I. 2014. Calcium-independent uncoupling activity of palmitic acid in liver mitochondria is regulated by the ion fluxes causing the interconversion of Δψ and ΔpH across the inner membrane. Biol. membrany (Rus.). 31, 252–262.

  9. Schönfeld P., Wojtczak L. 2008. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Rad. Biol. Med.45, 231–241.

    Article  Google Scholar 

  10. Cadenas S. 2018. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta.Bioenerg. 1859, 940–950.

    Article  CAS  Google Scholar 

  11. Korshunov S.S., Korkina O.V., Ruuge E.K., Skulachev V.P., Starkov A.A. 1998. Fatty acids as natural uncouplers preventing generation of \({\text{O}}_{2}^{{\centerdot \, - }}\) and H2O2 by mitochondria in the resting state. FEBS Lett. 435, 215–218.

    Article  CAS  Google Scholar 

  12. Andreyev A.Y., Kushnareva Y.E., Murphy A.N., Starkov A.A. 2015. Mitochondrial ROS metabolism: 10 years later. Biokhimia (Rus.). 80, 612–630.

    Google Scholar 

  13. Adakeeva S.I., Dubinin M.V., Samartsev V.N. 2015. Malonate as an inhibitor of cyclosporine A-sensitive calcium-independent free oxidation in liver mitochondria induced by fatty acids. Biol. membrany (Rus.). 32, 41–51.

  14. Knottnerus S.J.G., Bleeker J.C., Wüst R.C.I., Ferdinandusse S., IJlst L., Wijburg F.A., Wanders R.J.A., Visser G., Houtkooper R.H. 2018. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev. Endocr. Metab. Disord. 19, 93–106.

    Article  CAS  Google Scholar 

  15. Longo N., Frigeni M., Pasquali M. 2016. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta. 1863, 2422–2435.

    Article  CAS  Google Scholar 

  16. Wanders R.J., Komen J., Kemp S. 2011. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J.278, 182–194.

    Article  CAS  Google Scholar 

  17. Kim D., Cha G.S., Nagy L.D., Yun C.H., Guengerich F.P. 2014. Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11. Biochemistry. 53, 6161–6172.

    Article  CAS  Google Scholar 

  18. Hardwick J.P. 2008. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 75, 2263–2275.

    Article  CAS  Google Scholar 

  19. Ribel-Madsen A., Ribel-Madsen R., Brøns C., Newgard C.B., Vaag A.A., Hellgren L.I. 2016. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men. Physiol. Rep. 4, e12977.

    Article  Google Scholar 

  20. Orellana M., Rodrigo R., Valdes E. 1998. Peroxisomal and microsomal fatty acid oxidation in liver of rats after chronic ethanol consumption. Gen. Pharmacol. 31, 817–820.

    Article  CAS  Google Scholar 

  21. Reddy J.K. 2001. Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal beta-oxidation, PPAR alpha, and steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281, 1333–1339.

    Article  Google Scholar 

  22. Glasgow J.F., Middleton B. 2001. Reye syndrome–insights on causation and prognosis. Arch. Dis. Child. 85, 351–353.

    Article  CAS  Google Scholar 

  23. Tonsgard J.H. 1986. Serum dicarboxylic acids in patients with Reye syndrome. J. Pediatr. 109, 440–445.

    Article  CAS  Google Scholar 

  24. Markova O.V., Bondarenko D.I., Samartsev V.N. 1999. The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biokhimia (Rus.). 64, 679–685.

    Google Scholar 

  25. Rybakova S.R., Dubinin M.V., Samartsev V.N. 2013. The features of activation of free oxidation by α, ω-tetradecanedioic acid in liver mitochondria. Biol. membrany (Rus.). 30, 30–39.

  26. Terada H., Shima O., Yoshida K., and Shinohara Y. 1990. Effects of the local anesthetic bupivacaine on oxidative phosphorylation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions. J. Biol. Chem.265, 7837–7842.

    CAS  PubMed  Google Scholar 

  27. Papa S., Lorusso M., Di Paola M. 2006. Cooperativity and flexibility of the protonmotive activity of mitochondrial respiratory chain. Biochim. Biophys. Acta. 1757, 428–436.

    Article  CAS  Google Scholar 

  28. Jezek P., Modriansky M., Garlid K.D. 1997. Inactive fatty acids are unable to flip-flop across the lipid bilayer. FEBS Lett., 408, 161–165.

    Article  CAS  Google Scholar 

  29. Kamo N., Muratsugu M., Hondoh R., Kobatake Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and reationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49, 105–121.

    Article  CAS  Google Scholar 

  30. Brown G.C., Brand M.D. 1988. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem. J.252, 473–479.

    Article  CAS  Google Scholar 

  31. Schönfeld P., Schild L., Kunz W. 1989. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria. Biochim. Biophys. Acta, 977, 266–272.

    Article  Google Scholar 

  32. Shinohara Ya., Unami A., Teshima M., Nishida H., van Dam K., Terada H. 1995. Inhibitory effect of Mg2+ on the protonophoric activity of palmitic acid. Biochim. Biophis. Acta, 1228, 229–234.

    Article  Google Scholar 

  33. Bernardi P. 1999. Mitochondrial transport of cations: Channels, exchengers, and permeability transition. Physiol. Rev. 79, 1127–1155.

    Article  CAS  Google Scholar 

  34. Samartsev V.N., Paydyganov A.P., Polishchuk L.S., Zeldi I.P. 2004. Study on fatty acid uncoupling action in liver mitochondria by different pH of incubation medium. Biol. membrany (Rus.). 21, 39–45.

  35. Samartsev V.N., Mokhova E.N. 1997. ADP/ATP antiporter- and aspartate/glutamate antiporter-mediated fatty acid-induced uncoupling of liver mitochondria. Biochem. Mol. Biol. Int.42, 29–34.

    CAS  PubMed  Google Scholar 

  36. Mironova G.D., Kachaeva E.V., Kopylov A.T. 2007. Mitochondrial ATP-dependent potassium channel. 1. The structure of the channel, the mechanisms of its functioning and regulation. Vestn. Ross. Akad. Med. Nauk (Rus.). 2, 34–43.

    Google Scholar 

  37. Szabo I., Zoratti M. 2014. Mitochondrial channels: ion fluxes and more. Physiol. Rev. 94, 519–608.

    Article  CAS  Google Scholar 

  38. Dubinin M.V., Samartsev V.N., Stepanova A.E., Khoroshavina E.I., Penkov N.V., Yashin V.A., Starinets V.S. Mikheeva I.B., Gudkov S.V., Belosludtsev K.N. 2018. Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization. J. Bioenerg. Biomembr. 50, 391–401.

    Article  CAS  Google Scholar 

  39. Schönfeld P., Wojtczak L. 2007. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim. Biophys. Acta.1767, 1032–1040.

Download references

ACKNOWLEDGMENTS

This work was supported by the grant of the President of the Russian Federation for the state support of young Russian scientists (MK-61.2019.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dubinin.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of the Mari State University.

Additional information

Translated by M. Dubinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, A.A., Samartsev, V.N., Pavlova, S.I. et al. ω-Hydroxypalmitic and α,ω-Hexadecanedioic Acids As Activators of Free Respiration and Inhibitors of H2O2 Generation in Liver Mitochondria. Biochem. Moscow Suppl. Ser. A 14, 24–33 (2020). https://doi.org/10.1134/S1990747819060084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819060084

Keywords

Navigation