Skip to main content
Log in

Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The membrane potential of mitochondria was estimated from the accumulation of tetraphenyl phosphonium (TPP+), which was determined with the TPP+-selective electrode developed in the present study. The preparation and some operational parameters of the electrode were described. The kinetics for uptake by mitochondria of TPP+ and DDA+ (dibenzyldimethyl ammonium) were analyzed, and it was found that TPP+ permeated the mitochondrial membrane about 15 times faster than DDA+. The final amounts of accumulation of TPP+ and DDA+ by mitochondria were approximately equal. For the state-4 mitochondria, the membrane potential was about 180 mV (interior negative). Simulataneous measurements of TPP+-uptake and oxygen consumption showed that the transition between states 3 and 4 was detectable by use of the TPP+-electrode. After the TPP+-electrode showed that state-4 was reached, the extramitochondrial phosphorylation potential was measured. The difference in pH across the membrane was measured from the distribution of permeant anion, acetate, so as to calculate the proton electrochemical potential. The ratio of extra-mitochondrial phosphorylation potential to proton electro-chemical potential,n was close to 3. This value ofn was also found to be 3 when ATP was hydrolyzed under the condition that the respiratory chain was arrested. The implication thatn=3 was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akerman, K.E.O., Wikctrom, M.K.F. 1976. Safranine as a probe of the mitochondrial membrane potential.FEBS Lett. 68:191

    PubMed  Google Scholar 

  2. Alexandre, A., Reynafarje, B., Lehninger, A.L. 1978. Stoichiometry of vectrial H+ movements coupled to electron transport and to ATP synthesis in mitochondria.Proc. Nat. Acad. Sci. USA 75:5296

    PubMed  Google Scholar 

  3. Azzone, C.F., Pozzan, T., Massari, S. 1978. Proton electrochemical gradient and phosphate potential in mitochondria.Biochim. Biophys. Acta 501:307

    PubMed  Google Scholar 

  4. Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitsky, D.O., Liberman, E.A., Severina, I.I., Skulachev, V.P. 1970. Conversion of bio-membrane produced energy into electric form. II. Intact mitochondria.Biochim. Biophys. Acta. 216:13

    PubMed  Google Scholar 

  5. bergmeyer, J.U., 1971. Methods of Enzyme Analysis. Academic Press, New York

    Google Scholar 

  6. Berry, E.A., Hinkle, P.C. 1978. Estimation, of electrochemical proton gradient in submitochondrial particles.Fed. Proc. 37:1753

    Google Scholar 

  7. Brand M.D., Lehninger, A.L. 1977. H+/ATP ratio during ATP hydrolysis by mitochondria: Modification of the chemiosmotic theory.Proc. Nat. Acad. Sci. USA 74:1955

    PubMed  Google Scholar 

  8. Chance, B., Williams, G.R. 1955. A method for the localization of sites for oxidative phosphorylation.Nature (London) 176:250

    Google Scholar 

  9. Davis, E.J., Lumeng, L.L. 1975. Relationships, between the phosphorylation potentials generated by liver mitochondria and respiratory state under conditions of adenosine diphosphate control.J. Biol. Chem. 250:2275

    Google Scholar 

  10. Davis, E.J., Lumeng, L., Boffoms, D. 1974. On the relationships between the stoichiometry of oxidative phosphorylation and the phosphorylation potential of rat liver mitochondria as functions of respiratory state.FEBS Lett. 39:9

    PubMed  Google Scholar 

  11. Fiske, C.H., Subbarow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375

    Google Scholar 

  12. Griniuviene, B., Chmieliauskaite, V., Grinius, L. 1974. Energy-linked transport of permeant ions inEscherichia coli cells: Evidence for membrane potential generation by proton-pump.Biochem. Biophys. Res. Commun. 56:206

    PubMed  Google Scholar 

  13. Hackenbrock, C.R. 1966. Ultrastructual basis for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructual changes with change in metabolic steady state in isolated liver mitochondria.J. cell Biol. 30:269

    PubMed  Google Scholar 

  14. Harold, F.M., Papineau, D. 1972. Cation transport and electrogenesis byStreptococcus faecalis. I. The membrane potential.J. Membrane Biol. 8:27

    Google Scholar 

  15. Heldt, H.W., Klingenberg, M., Milovancev, M. 1972. Differences between the ATP/ADP ratios in the mitochondrial matrix and in the extramitochondrial space.Eur. J. Biochem. 30:434

    PubMed  Google Scholar 

  16. Hirata, H., Altendorf, K., Harold, F.M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles ofEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1804

    PubMed  Google Scholar 

  17. Johnson, F.M., Eyring, H., Polissar, M.J. 1954. The Kinetic Basis of Molecular Biology. p. 545. John Wiley & Sons, New York

    Google Scholar 

  18. Kamo, N., Muratsugu, M., Kurihara, K., Kobatake, Y. 1976. Change in surface charge density and membrane potential of intact mitochondria during energization.FEBS Lett. 72:247

    Google Scholar 

  19. Klingenberg, M., Rottenberg, H. 1977. Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane.Eur. J. Biochem. 73:125

    PubMed  Google Scholar 

  20. Klingerberg, M. 1976. The ADP-ATP carrier in mitochondrial membranes.In: The Enzymes of Biological Membrane. Vol. 3. Membrane Transport. A. Martonosi, editor. Plenum, New York

    Google Scholar 

  21. Komor, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris.Eur. J. Biochem. 70:197

    PubMed  Google Scholar 

  22. Lakshminarayanaiah, N. 1976. Membrane Electrode. p. 86. Academic, New York

    Google Scholar 

  23. Laris, P., Bahr, D.P., Chaffee, R.R.J. 1975. Membrane potentials in mitochondrial preparations as measured by means of a cyanine dye.Biochim. Biophys. Acta 376:415

    PubMed  Google Scholar 

  24. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  25. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:445

    PubMed  Google Scholar 

  26. Mitchell, P., Moyle, J. 1968. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria.Eur. J. Biochem. 4:530

    PubMed  Google Scholar 

  27. Mitchell, P., Moyle, J. 1969. Estimation of membrane potential and pH difference across the criste membrane of rat liver mitochondria.Eur. J. Biochem. 7:471

    PubMed  Google Scholar 

  28. Mitchell, P., Moyle, J. 1967. Respiration-driven proton translocation in rat liver mitochondria.Biochem. J. 105:1147

    Google Scholar 

  29. Moyle, J., Mitchell, P. 1978. Measurements of mitochondrial H+/O quotients: Effects of phosphate and N-ethylmaleimide.FEBS Lett. 90:361

    PubMed  Google Scholar 

  30. Muraoka, S., Slater, E.C. 1969. The redox states of respiratory-chain components in rat-liver mitochondria.Biochim. Biophys. Acta 180:221

    PubMed  Google Scholar 

  31. Muratsugu, M., Kamo, N., Kurihara, K., Kobatake, Y. 1977. Selective electrode for dibenzyldimethyl ammonium cation as indicator of the membrane potential, in biological system.Biochim. Biophys. Acta 464:613

    PubMed  Google Scholar 

  32. Nicholls, D.G. 1974. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution.Eur. J. Biochem. 50:305

    PubMed  Google Scholar 

  33. Nicholls, D.G., Berson, V.S.M. 1977. Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs.Eur. J. Biochem. 75:601

    PubMed  Google Scholar 

  34. Padan, S., Rottenberg, H. 1973. Respiratory control and proton electro-chemical gradient in mitochondria.Eur. J. Biochem. 40:413

    Google Scholar 

  35. Papa, S. 1976. Proton translocation reactions in the respiratory chains.Biochim. Biophys. Acta 456:39

    PubMed  Google Scholar 

  36. Quagliariello, E., Genchi, G., Falmieri, F. 1971. Respiration-dependent anion uptake by rat liver mitochondria.FEBS Lett. 13:253

    PubMed  Google Scholar 

  37. Ramos, S., Schuldiner, S., Kaback, H.R. 1976. The electrochemical gradient of protons and its relationship to active transport inEscherichia coli membrane vesicles.Proc. Nat. Acad. Sci. USA 73:1892

    PubMed  Google Scholar 

  38. Rosing, J., Slater, E.C. 1972. The value of ΔG 0 for hydrolysis of ATP.Biochim. Biophys. Acta 267:257

    Google Scholar 

  39. Rottenberg H. 1973. The mechanism of energy-dependent ion transport in mitochondria.J. Membrane Biol. 11:117

    Google Scholar 

  40. Rottenberg, H. 1975. The measurement of transmembrane electrochemical proton gradients.J. Bioenerg. 7:61

    PubMed  Google Scholar 

  41. Shinbo, T., Kamo, N., Kurihara, K., Kobatake, Y. 1978. A PVC-based electrode sensitive to DDA+ as a device for monitoring the membrane potential in biological systems.Archiv. Biochem. Biophys. 187:414

    Google Scholar 

  42. Skulachev, V.P. 1975. Energy coupling in biological membranes: Current state and perspectives.In: Energy Tranducing Mechanisms Biochemistry Series One. Vol. 3, pp. 31–73. E. Racker, editor. Butterworths, London

    Google Scholar 

  43. Slater, E.C., Rosing, J., Mol, A. 1973. The phosphorylation potential generated by respiring mitochondria.Biochim. Biophys. Acta 292:534

    PubMed  Google Scholar 

  44. Sone, N., Yoshida, M., Hirata, H., Okamoto, H., and Kagawa, Y. 1976. Electrochemical potential of protons in vesicles reconstituted from purified, proton-translocation adenosine triphosphatase.J. Membrane Biol. 30:12

    Google Scholar 

  45. Sorgato, M.C., Ferguson, S.J., Kell, D.B., John, P. 1978. The protonmotine force in bovine heart submitochondrial particles.Biochem. J. 174:237

    PubMed  Google Scholar 

  46. Thayer, W., Hinkle, P.C. 1973. Stoichiometry of adenosine triphosphate-driven proton translocation in bovine heart submitochondrial particles.J. Biol. Chem. 248:5395

    PubMed  Google Scholar 

  47. Vercesi, A., Reynafarje, B., Lehninger, A.L. 1978. Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria.J. Biol. Chem. 253:6379

    PubMed  Google Scholar 

  48. Wiechmann, A.H.C.A., Beem, E.P., Dam, K. van 1975. The relation between H+ translocation and ATP synthesis in mitochondria.In: Electron Transfer Chains and Oxidative Phosphorylation. E. Equadliariello, S. Papa, F. Palmieri, E.C. Slater and N. Siliprandi, editors. pp. 335–342. North-Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamo, N., Muratsugu, M., Hongoh, R. et al. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membrain Biol. 49, 105–121 (1979). https://doi.org/10.1007/BF01868720

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868720

Keywords

Navigation