Skip to main content
Log in

The Effect of Basic Fibroblast Growth Factor on Signaling Pathways in Adult Human Retinal Pigment Epithelial Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Retinal pigment epithelium (RPE) plays a key role in the development of many eye diseases characterized by visual impairment and even blindness. The use of cell cultures to model changes in RPE makes it possible to study stimulating factors and signaling pathways that coordinate the cellular and molecular mechanisms of intercellular interactions under pathological conditions. In addition, it is possible to identify targets and develop a specific therapy to eliminate pathological changes in the retina. Based on the results of previously obtained experimental data on decreased differentiation of RPE cells in the direction of the neuroepithelium after a single exposure to basic fibroblast growth factor (bFGF), research in this area was continued and changes in Wnt-, BMP-, and Notch-signaling pathways were examined. It is necessary for a deeper understanding of the mechanisms that decrease the level of differentiation of RPE cells. It was found that the addition of bFGF to culture decreased immunocytochemical staining for β-catenin; increased staining for Wnt7a, BMP2, and BMP7; and altered localization of stained BMP4. In addition, quantitative real-time PCR of RPE cells treated with bFGF revealed enhanced expression of mRNA of BMP2, a decreased expression of mRNA genes, such as CTNNB1, BMP4, and BMPR2, as well as mRNA of Notch-signaling genes, such as JAG1, NOTCH1, HES1, and HEY1. Analysis of the data indicates inactivation of the Wnt/β-catenin and Notch-signaling pathways, activation of the noncanonical Wnt/PCP signaling pathway, and modulating of BMP-signaling with a decrease in the level of differentiation of adult RPE cells after their a single (short-term) exposure to bFGF. Thus, the results obtained clarify the mechanisms of dedifferentiation of RPE cells under the influence of bFGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Al-Hussaini, H., Kam, J.H., Vugler, A., Semo, M., and Jeffery, G., Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo, Mol. Vis., 2008, vol. 14, pp. 1784–1791.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baldwin, A.K., Cain, S.A., Lennon, R., Godwin, A., Merry, C, .L.R., and Kielty, C.M., Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils, J. Cell Sci., 2014, vol. 127, pp. 158–171. https://doi.org/10.1242/jcs.134270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bikkavilli, R.K., Avasarala, S., Van, Scoyk, M., Arcaroli, J., Brzezinski, C., Zhang, W., Edwards, M.G., Rathinam, M.K.K., Zhou, T., Tauler, J., Borowicz, S., Lussier, Y.A., Parr, B.A., Cool, C.D., and Winn, R.A., Wnt7a is a novel inducer of B-catenin-independent tumor-suppressive cellular senescence in lung cancer, Oncogene, 2015, vol. 34, pp. 5317–5328. https://doi.org/10.1038/onc.2015.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blauwkamp, T.A., Nigam, S., Ardehali, R., Weissman, I.L., and Nusse, R., Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors, Nat. Commun., 2012, vol. 3, p. 1070. https://doi.org/10.1038/ncomms2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao, W., Wen, R., Li, F., Lavail, M.M., and Steinberg, R.H., Mechanical injury increases bFGF and CNTF mRNA expression in the mouse retina, Exp. Eye Res., 1997, vol. 65, pp. 241–248. https://doi.org/10.1006/exer.1997.0328

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X., Xiao, W., Wang, W., Luo, L., Ye, S., and Liu, Y., The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial–mesenchymal transition in retinal pigment epithelium cells, PLoS One, 2014, vol. 9, no. 5. e96365. https://doi.org/10.1371/journal.pone.0096365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiba, C., Hoshino, A., Nakamura, K., Susaki, K., Yamano, Y., Kaneko, Y., Kuwata, O., Maruo, F., and Saito, T., Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt, J. Comp. Neurol., 2006, vol. 495, pp. 391–407. https://doi.org/10.1002/cne.20880

    Article  CAS  PubMed  Google Scholar 

  8. Cho, I.H., Park, S.J., Lee, S.H., Nah, S.K., Park, H.Y., Yang, J.Y., Madrakhimov, S.B., Lyu, J., and Park, T.K., The role of Wnt/β-catenin signaling in the restoration of induced pluripotent stem cell-derived retinal pigment epithelium after laser photocoagulation, Lasers Med Sci., 2018. https://doi.org/10.1007/s10103-018-2631-5

  9. Clevers, H., Wnt/beta-catenin signaling in development and disease, Cell, 2006, vol. 127, pp. 469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  10. Ding, V.M.Y., Ling, L., Natarajan, S., Yap, M.G.S., Cool, S.M., and Choo, A.B.H., FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3β signaling, J. Cell. Physiol., 2010, vol. 225, pp. 417–428. https://doi.org/10.1002/jcp.22214

    Article  CAS  PubMed  Google Scholar 

  11. Espinosa, L., Inglés-Esteve, J., Aguilera, C., and Bigas, A., Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways, J. Biol. Chem., 2003, vol. 278, pp. 32227–32235. https://doi.org/10.1074/jbc.M304001200

    Article  CAS  PubMed  Google Scholar 

  12. Frank, R.N., Amin, R.H., Eliott, D., Puklin, J.E., and Abrams, G.W., Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes, Am. J. Ophthalmol., 1996, vol. 122, pp. 393–403.

    Article  CAS  PubMed  Google Scholar 

  13. Fujimura, N., Taketo, M.M., Mori, M., Korinek, V., and Kozmik, Z., Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium, Dev. Biol., 2009, vol. 334, pp. 31–45. https://doi.org/10.1016/j.ydbio.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  14. Galy, A., Néron, B., Planque, N., Saule, S., and Eychène, A., Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina, Dev. Biol., 2002, vol. 248, pp. 251–264.

    Article  CAS  PubMed  Google Scholar 

  15. Grigoryan, E.N., Markitantova, Y.V., Avdonin, P.P., and Radugina, E.A., Study of regeneration in amphibians in age of molecular-genetic approaches and methods, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 46–62. https://doi.org/10.1134/S1022795413010043

    Article  CAS  Google Scholar 

  16. Guha, S., Cullen, J.P., Morrow, D., Colombo, A., Lally, C., Walls, D., Redmond, E.M., and Cahill, P.A., Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival, Basic Res. Cardiol., 2011, vol. 106, pp. 773–785. https://doi.org/10.1007/s00395-011-0189-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hogan, B.L., Bone morphogenetic proteins in development, Curr. Opin. Genet. Dev., 1996, vol. 6, pp. 432–438.

    Article  CAS  PubMed  Google Scholar 

  18. Isaeva, A.V., Zima, A.P., Shabalova, I.P., Ryazan-tseva, N.V., Vasil’eva, O.A., Kasoayn, K.T., Saprina, T.V., Latypova, V.N. Berezkina, I.S., and Novitskii, VV., β-Catenin: structure, function and role in malignant transformation of epithelial cells, Vestn. Ross. Akad. Med. Nauk, 2015, vol. 70, no. 4, pp. 475–483. https://doi.org/10.15690/vramn.v70.i4.1415

    Article  Google Scholar 

  19. Jensen, E.C., Quantitative analysis of histological staining and fluorescence using ImageJ, Anat. Rec., 2013, vol. 296, pp. 378–381. https://doi.org/10.1002/ar.22641

    Article  Google Scholar 

  20. Katoh, M. and Katoh, M., Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate Beta-catenin and SNAIL signaling cascades, Cancer Biol. Ther., 2006, vol. 5, pp. 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, T.-H., Moon, J.-Y., Kim, S.-H., Paik, S.S., Yoon, H.J., Shin, D.H., Park, S.S., and Sohn, J.W., Clinical significance of aberrant Wnt7a promoter methylation in human non-small cell lung cancer in Koreans, J. Korean Med. Sci., 2015, vol. 30, pp. 155–161. https://doi.org/10.3346/jkms.2015.30.2.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulikova, K.V., Kibardin, A.V., Gnuchev, N.V., Georgiev, G.P., and Larin, S.S., Wnt signaling pathway and its significance for melanoma development, Sovr. Tekhnol. Med., 2012, vol. 3, pp. 107–112.

    Google Scholar 

  23. Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Human adult retinal pigment epithelial cells as potential cell source for retina recovery, Cell Tissue Biol., 2011, vol. 5, no. 5, pp. 495–502.

    Article  Google Scholar 

  24. Kuznetsova, A.V., Kurinov, A.M., and Aleksandrova, M.A., Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium, J. Ophthalmol., 2014, vol. 2014, pp. 1–18. https://doi.org/10.1155/2014/801787

    Article  CAS  Google Scholar 

  25. Kuznetsova, A.V., Kurinov, A.M., Chentsova, E V., Makarov, P.V., and Aleksandrova, M.A., Effect of hrWnt7a on human retinal pigment epithelial cells in vitro, Bull. Exp. Biol. Med., 2015, vol. 159, no. 4, pp. 534–540.

    Article  CAS  PubMed  Google Scholar 

  26. Kuznetsova, A.V., Aleksandrova, M.A., Kurinov, A.M., Chentsova, E.V., and Makarov, P.V., Plasticity of adult human retinal pigment epithelial cells, Int. J. Clin. Exp. Med., 2016, vol. 9, pp. 20892–20906.

    CAS  Google Scholar 

  27. Kuznetsova, A.V., Kurinov, A.M., Rzhanova, L.A. and Aleksandrova, M.A., Mechanisms of dedifferentiation of the adult human retinal pigment epithelial cells in vitro: morphological and molecular-genetic analysis, Cell Tissue Biol., 2019, vol. 13 (in press).

  28. Lee, H.C., Lim, S., and Han, J.Y., Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro, Sci. Rep., 2016, vol. 6, p. 34510. https://doi.org/10.1038/srep34510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, B., Qu, C., Chen, C., Liu, Y., Akiyama, K., Yang, R., Chen, F., Zhao, Y., and Shi, S., Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling, Oral Dis., 2015, vol. 18, pp. 285–292. https://doi.org/10.1111/j.1601-0825.2011.01878.x

    Article  Google Scholar 

  30. Li, Q., Rycaj, K., Chen, X., and Tang, D.G., Cancer stem cells and cell size: a causal link?, Semin. Cancer Biol., 2015, vol. 35, pp. 191–199. https://doi.org/10.1016/j.semcancer.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, W., Jin, G., Long, C., Zhou, X., Tang, Y., Huang, S., Kuang, X., Wu, L., Zhang, Q., and Shen, H., Blockage of Notch signaling inhibits the migration and proliferation of retinal pigment epithelial cells, Sci. World J., 2013, vol. 2013, p. 178708. https://doi.org/10.1155/2013/178708

    Article  CAS  Google Scholar 

  32. Lotz, S., Goderie, S., Tokas, N., Hirsch, S.E., Ahmad, F., Corneo, B., Le, S., Banerjee, A., Kane, R.S., Stern, J.H., Temple, S., and Fasano, C.A., Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding, PLoS One, 2013, vol. 8. e56289. https://doi.org/10.1371/journal.pone.0056289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S., Llanas, R.A., and Thomson, J.A., Derivation of human embryonic stem cells in defined conditions, Nat. Biotechnol., 2006, vol. 24, pp. 185–187. https://doi.org/10.1038/nbt1177

    Article  CAS  PubMed  Google Scholar 

  34. Luz-Madrigal, A., Grajales-Esquivel, E., McCorkle, A., DiLorenzo, A.M., Barbosa-Sabanero, K., Tsonis, P.A., and Del, Rio-Tsonis, K., Reprogramming of the chick retinal pigmented epithelium after retinal injury, BMC Biol., 2014, vol. 12, p. 28. https://doi.org/10.1186/1741-7007-12-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mathura, J.R., Jafari, N., Chang, J.T., Hackett, S.F., Wahlin, K.J., Della, N.G., Okamoto, N., Zack, D.J., and Campochiaro, P.A., Bone morphogenetic proteins-2 and -4: negative growth regulators in adult retinal pigmented epithelium, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, pp. 592–600.

    PubMed  Google Scholar 

  36. Medina, M. and Wandosell, F., Deconstructing GSK-3: the fine regulation of its activity, Int. J. Alzheimers. Dis., 2011, vol. 2011, p. 479249. https://doi.org/10.4061/2011/479249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milyushina, L.A., Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Phenotypic plasticity of retinal pigment epithelial cells from adult human eye in vitro, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 506–511.

    Article  CAS  PubMed  Google Scholar 

  38. Nowwarote, N., Sawangmake, C., Pavasant, P., and Osathanon, T., Review of the role of basic fibroblast growth factor in dental tissue-derived mesenchymal stem cells, Asian Biomed., 2015, vol. 9, pp. 271–283. https://doi.org/10.5372/1905-7415.0903.395

    Article  CAS  Google Scholar 

  39. Ohira, T., Gemmill, R.M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., Zeng, C., Baron, A., Bemis, L., Erickson, P., Wilder, E., Rustgi, A., Kitajewski, J., Gabrielson, E., Bremnes, R., Franklin, W., and Drabkin, H.A., WNT7a induces E-cadherin in lung cancer cells, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 10429–1034. https://doi.org/10.1073/pnas.1734137100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qi, X., Li, T.-G., Hao, J., Hu, J., Wang, J., Simmons, H., Miura, S., Mishina, Y., and Zhao, G.-Q., BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 6027–6032. https://doi.org/10.1073/pnas.0401367101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L., A role for Wnt signalling in self-renewal of haematopoietic stem cells, Nature, 2003, vol. 423, pp. 409–414. https://doi.org/10.1038/nature01593

    Article  CAS  PubMed  Google Scholar 

  42. Rocher, C., Singla, R., Singal, P.K., Parthasarathy, S., and Singla, D.K., Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages, Can. J. Physiol. Pharmacol., 2012, vol. 90, pp. 947–951. https://doi.org/10.1139/y2012-102

    Article  CAS  PubMed  Google Scholar 

  43. Shtein, G.I. and Kudryavtsev, B.N., Use of confocal microscopy for microfluorimetric research in cell biology, Cell Tissue Biol., 2019, vol. 13 (in press).

  44. Shtein, G.I., Panteleyev, V.G., and Kudryavtsev, B.N., Methodological problems of digital cytophotometry, Tsitologiia, 2016, vol. 58, no. 3, pp. 234–242.

    Google Scholar 

  45. Staal, F.J.T., Wnt signalling meets epigenetics, Stem Cell Investig., 2016, vol. 3, p. 38. https://doi.org/10.21037/sci.2016.08.01

    Article  PubMed  PubMed Central  Google Scholar 

  46. Steindl-Kuscher, K., Krugluger, W., Boulton, M.E., Haas, P., Schrattbauer, K., Feichtinger, H., Adlassnig, W., and Binder, S., Activation of the B-catenin signaling pathway and its impact on RPE cell cycle, Investig. Opthalmol. Vis. Sci., 2009, vol. 50, pp. 4471–4476. https://doi.org/10.1167/iovs.08-3139

    Article  Google Scholar 

  47. Takeuchi, A., Fukazawa, S., Chida, K., Taguchi, M., Shirataka, M., and Ikeda, N., Semi-automatic counting of connexin 32s immunolocalized in cultured fetal rat hepatocytes using image processing, Acta Histochem., 2012, vol. 114, pp. 318–326. https://doi.org/10.1016/j.acthis.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  48. Teryukova, N.P., Sakhenberg, E.I., Ivanov, V.A., and Snopov, S.A., Establishment and characterization of clonal lines with cancer stem-and progenitor-cell properties from monolayer zajdela hepatoma, Cell Tissue Biol., 2016, vol. 11, no. 2, pp. 161–171.

    Article  Google Scholar 

  49. Tian, J., Ishibashi, K., Honda, S., Boylan, S.A., Hjelmeland, L.M., and Handa, J.T., The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions, Br. J. Ophthalmol., 2005, vol. 89, pp. 1510–1517. https://doi.org/10.1136/bjo.2005.072108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Urbán, N. and Guillemot, F., Neurogenesis in the embryonic and adult brain: same regulators, different roles, Front. Cell. Neurosci., 2014, vol. 8, p. 396. https://doi.org/10.3389/fncel.2014.00396

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wen, R., Song, Y., Cheng, T., Matthes, M.T., Yasumura, D., LaVail, M.M., and Steinberg, R.H., Injury-induced upregulation of bFGF and CNTF MRNAS in the rat retina, J. Neurosci., 1995, vol. 15, no. 11, pp. 7377–7385.

    Article  CAS  PubMed  Google Scholar 

  52. Wordinger, R.J. and Clark, A.F., Bone morphogenetic proteins and their receptors in the eye, Exp. Biol. Med. (Maywood)., 2007, vol. 232, pp. 979–992. https://doi.org/10.3181/0510-MR-345

    Article  CAS  Google Scholar 

  53. Xiao, W., Chen, X., Liu, X., Luo, L., Ye, S., and Liu, Y., Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial–mesenchymal transition in retinal pigment epithelium cells, J. Cell. Mol. Med., 2014, vol. 18, pp. 646–655. https://doi.org/10.1111/jcmm.12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, S., Li, H., Li, M., and Wang, F., Mechanisms of epithelial–mesenchymal transition in proliferative vitreoretinopathy, Discov. Med., 2015, vol. 20, pp. 207–217.

    PubMed  Google Scholar 

  55. Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., and Kalluri, R., BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury, Nat. Med., 2003, vol. 9, pp. 964–968. https://doi.org/10.1038/nm888

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, C., Su, L., Huang, L., and Song, Z.-Y., GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways, Int. J. Ophthalmol., 2018, vol. 11, pp. 1120–1128. https://doi.org/10.18240/ijo.2018.07.08

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zheng, L. and Conner, S.D., Glycogen synthase kinase 3β inhibition enhances Notch1 recycling, Mol. Biol. Cell., 2018, vol. 29, pp. 389–395. https://doi.org/10.1091/mbc.E17-07-0474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu, J., Luz-Madrigal, A., Haynes, T., Zavada, J., Burke, A.K., and Del Rio-Tsonis, K., β -Catenin inactivation is a pre-requisite for chick retina regeneration, PLoS One, 2014, vol. 9, no. 7. e101748. https://doi.org/10.1371/journal.pone.0101748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Center for Collective Use of the Institute of Developmental Biology, Russian Academy of Sciences.

Funding

This work was performed as part of a state order of the Institute of Developmental Biology, Russian Academy of Sciences, no. 0108-2019-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by I. Fridlyanskaya

   Abbreviations: BMP—bone morphogenetic protein; ICC—immunocytochemistry; qPCR—quantitative real-time polymerase chain reaction; FGF and bFGF—fibroblast growth factor and basic FGF, respectively; RPE—retinal pigment epithelium; SC—stem cell; EMT—epithelial–mesenchymal transition; ESC—embryonic stem cell; NCR—nuclear cytoplasmic ratio; TCF—transcription factor; TGFβ—transforming growth factor β.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, A.V., Rzhanova, L.A., Kurinov, A.M. et al. The Effect of Basic Fibroblast Growth Factor on Signaling Pathways in Adult Human Retinal Pigment Epithelial Cells. Cell Tiss. Biol. 13, 292–304 (2019). https://doi.org/10.1134/S1990519X19040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19040059

Keywords:

Navigation