Skip to main content
Log in

Uranium(VI) Adsorption Using a Mixture of 1-Amino-2-naphthol-4-sulfonic Acid and Bentonite: Kinetic and Equilibrium Studies

  • Published:
Radiochemistry Aims and scope

An Erratum to this article was published on 01 June 2020

This article has been updated

Abstract

Uranium was adsorbed using bentonite treated with 1-amino-2-naphthol-4-sulfonic acid (ANSA). The prepared Bt-(ANSA) was characterized, and its adsorption affinity for uranium(VI) was evaluated. The influence exerted on the uranium adsorption by pH, contact time, adsorbent dose, initial uranium concentration, interfering ions, and temperature was studied. The optimum conditions are pH 8.5, 0.04 g of Bt-(ANSA) per 10 mL of 400 mg/L uranium solution, and 20-min contact at room temperature. The majority of cations except Th, Fe, Cu, and Ni do not interfere with the uranium adsorption. The adsorption kinetics and equilibrium were studied. The application of the Langmuir model showed that the maximum sorption capacity reached 90.9 mg/g at room temperature. The adsorption process was found to follow a pseudo-second order kinetic model at 400 mg/L uranium concentration. Evaluation of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) shows that the adsorption is spontaneous exothermic accompanied by a decrease in randomness. Uranium(VI) ions were efficiently desorbed using a 1 M HNO3 solution with the adsorbent regeneration. The optimum conditions were applied to separate uranium from carbonate leach liquor solution of a field sample from Abu Hamatta area, SW Sinai, Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Change history

  • 28 December 2020

    Erratum

REFERENCES

  1. Zhu, Z., Pranolo, Y., and Cheng, C., Miner. Eng., 2015, vol. 77, pp. 185–196. https://doi.org/10.1016/j.mineng.2015.03.012

    Article  CAS  Google Scholar 

  2. Houhoune, F., Nibou, D., Chegrouche, S., and Menacer, S., Environ. Chem. Eng., 2016, vol. 4, pp. 3459–3467. https://doi.org/10.1016/j.jece.2016.07.018.

    Article  CAS  Google Scholar 

  3. Chen, Y., Wei, Y., He, S., and Tang, L., J. Chromatogr. A, 2016, vol. 1466, pp. 37–41. https://doi.org/10.1016/j.chroma.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  4. Ang, K., Li, D., and Nikoloski, A., Miner. Eng., 2018, vol. 123, pp. 8–15. https://doi.org/10.1016/j.mineng.2018.04.017

    Article  CAS  Google Scholar 

  5. Liu, X., Xu, Y., and Jin, R., J. Mol. Liq., 2014, vol. 200, pp. 311–318. https://doi.org/10.1016/j.molliq.2014.10.021

    Article  CAS  Google Scholar 

  6. Guettaf, H., Becis, A., Ferhat, K., Hanou, K., Bouchiha, D., Yakoubi, K., and Ferrad, F., Phys. Procedia, 2009, vol. 2, no. 3, pp. 765–771. https://doi.org/10.1016/j.phpro.2009.11.023

    Article  CAS  Google Scholar 

  7. Wang, D., Xu, Y., Xiao, D., Qiao, Q., Yin, P., Yang, Z., Li, J., Winchester, W., Wang, Z., and Hayat, T., J. Hazard. Mater., 2019, vol. 371, pp. 83–93. https://doi.org/10.1016/j.jhazmat.2019.02.091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burns, A., Abbasi, P., and Dreisinger, D., Hydrometallurgy, 2016, vol. 163, pp. 49–54. https://doi.org/10.1016/j.hydromet.2016.03.008

    Article  CAS  Google Scholar 

  9. Tiess, G., Resources Policy, 2010, vol. 35, no. 3, pp. 190–198. https://doi.org/10.1016/j.resourpol.2010.05.005

    Article  Google Scholar 

  10. Duan, S., Xu, X., Liu, X., Wang, Y., Hayat, T., Alsaedi, A., Meng, Y., and Li, J., J. Colloid Interface Sci., 2018, vol. 513, pp. 92–103. https://doi.org/10.1016/j.jcis.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Lacy, I., Uranium for Nuclear Power, 2016. https://doi.org/10.1016/B978-0-08-100307-7.00009-0

  12. Bhalara, P., Punetha, D., and Balasubramanian, K., J. Environ. Chem. Eng., 2014, vol. 2, no. 3, pp. 1621–1634. https://doi.org/10.1016/j.jece.2014.06.007

    Article  CAS  Google Scholar 

  13. Liu, Y., Alessi, D., Flynn, S., Alam, M., Hao, W., Gingras, M., Zhao, H., and Konhauser, K., Chem. Geol., 2018, vol. 483, pp. 191–200. https://doi.org/10.1016/j.chemgeo.2018.01.018

    Article  CAS  Google Scholar 

  14. Liu, X., Xu, X., Sun, J., Alsaedi, A., Hayat, T., Li, J., and Wang, X., Chem. Eng. J., 2018, vol. 343, pp. 217–224. https://doi.org/10.1016/j.cej.2018.02.113

    Article  CAS  Google Scholar 

  15. Liu, X., Sun, J., Xu, X., Alsaedi, A., Hayat, T., and Li, J., Chem. Eng. J., 2019, vol. 360, pp. 941–950. https://doi.org/10.1016/j.cej.2018.04.050

    Article  CAS  Google Scholar 

  16. Guerra, D., Mello, I., Freitas, L., Resende, R., and Silva, R., Int. J. Mining Sci. Technol., 2014, vol. 24, pp. 525–535. https://doi.org/10.1016/j.ijmst.2014.05.017

    Article  CAS  Google Scholar 

  17. Zhu, H., Duan, S., Chen, L., Alsaedi, A., Hayat, T., and Li, J., Plasma Sci. Technol., 2017, vol. 19, no. 11, pp. 115501–115511. https://doi.org/10.1088/2058-6272/aa8168

    Article  CAS  Google Scholar 

  18. Aytas, S., Yurtlu, M., and Donat, R., J. Hazard. Mater., 2009, vol. 172, pp. 667–674. https://doi.org/10.1016/j.jhazmat.2009.07.049

    Article  CAS  PubMed  Google Scholar 

  19. Tournassat, C., Tinnacher, R., Grangeon, S., and Davis, J., Geochim. Cosmochim. Acta, 2018, vol. 220, pp. 291–308. https://doi.org/10.1016/j.gca.2017.09.049

    Article  CAS  Google Scholar 

  20. Fernandes, M. and Baeyens, B., Appl. Geochem., 2019, vol. 100, pp. 190–202. https://doi.org/10.1016/j.apgeochem.2018.11.005

    Article  CAS  Google Scholar 

  21. Zahran, F., El-Maghrabi, H., Hussein, G., and Abdelmaged, S., Environ. Nanotechnol., Monitor. Manag., 2019, vol. 11, pp. 200–205. https://doi.org/10.1016/j.enmm.2018.100205

    Article  Google Scholar 

  22. Wang, W., Xu, H., Ren, X., and Deng, L., J. Mol. Liq., 2019, vol. 276, pp. 919–926. https://doi.org/10.1016/j.molliq.2018.12.130

    Article  CAS  Google Scholar 

  23. Abou-El-Sherbini, K. and Hassanien, M., J. Hazard. Mater., 2010, vol. 184, pp. 654–661. https://doi.org/10.1016/j.jhazmat.2010.08.088

    Article  CAS  PubMed  Google Scholar 

  24. Asad, A., Shantanu, K., Mohammad, A., and Raquibul, H., Int. J. Earth Sci., 2013, vol. 2, no. 3, pp. 88–95. https://doi.org/10.11648/j.earth.20130203.13

    Article  Google Scholar 

  25. Banik, N., Jahan, S., Mostofa, S., Kabir, H., Sharmin, N., Rahman, M., and Ahmed, S., Bangladesh J.Sci. Ind. Res., 2015, vol. 50, no. 1, pp. 65–70. https://doi.org/10.3329/bjsir.v50i1.23812

    Article  CAS  Google Scholar 

  26. Bourg, I., Sposito, G., and Bourg, A., J. Colloid Interface Sci., 2007, vol. 312, pp. 297–310. https://doi.org/10.1016/j.jcis.2007.03.062

    Article  CAS  PubMed  Google Scholar 

  27. Mathew, K., Mason, B., Morales, M., and Narayann, U., J. Radioanal. Nucl. Chem., 2009, vol. 282, pp. 939–944. https://doi.org/10.1007/s10967-009-0186-4

    Article  CAS  Google Scholar 

  28. Marczenko, Z. and Balcerzak, M., Separation, Preconcentration, and Spectrophotometry in Inorganic Analysis, Amsterdam: Elsevier, 2000.

    Google Scholar 

  29. Shapiro, L. and Brannock, W., US Geol. Survey Bull., 1962, vol. 114, pp. 51–53. https://doi.org/10.3133/b1144A

    Article  Google Scholar 

  30. Govindaraju, K., Mevelle, C., and Chouard, C., Anal. Chem., 1976, vol. 48, pp. 1325–1331. https://doi.org/10.1021/ac50003a018

    Article  CAS  Google Scholar 

  31. Bakry, A. and Saleh, M., Chem. Technol., 2015, vol. 10, no. 6, pp. 266-275.

    Google Scholar 

  32. Dong, J. and Ozaki, Y., Macromolecules, 1997, vol. 30, pp. 286–292. https://doi.org/10.1021/ma9607168

    Article  CAS  Google Scholar 

  33. Ferrah, N., Abderrahim, O., Didi, M.A., and Villemin, D., J. Radioanal. Nucl. Chem., 2011, vol. 289, no. 3, pp. 721–730. https://doi.org/10.1007/s10967-011-1172-1

    Article  CAS  Google Scholar 

  34. Khani, M.H., Keshtkar, A.R., Meysami, B., Zarea, M.F., and Jalali, R., Electron. J. Biotechnol., 2006, vol. 9, no. 2, pp. 100–106. https://doi.org/10.2225/vol9-issue2-fulltext-8

    Article  CAS  Google Scholar 

  35. El Azzouzi, E., El Madani, M., Mekkaoui, M., El Belghiti, M.A., El M’Rabet, M., Mountacer, H., El Hourc, A., Zrineh, A., and El Azzouzi, M., Biotechnol. Agron. Soc. Environ., 2010, vol. 14, no. 4, pp. 659–665. https://popups.uliege.be:443/1780-4507/index.php?id=6478. `

    CAS  Google Scholar 

  36. Kannamba, B., Reddy, K., and Apparao, B., J. Hazard Mater., 2010, vol. 175, pp. 935–948. https://doi.org/10.1016/j.jhazmat.2009.10.098

    Article  CAS  Google Scholar 

  37. Dai, Y., Zhang, Y., and Wang, Z., Chem. Phys. Lett., 2003, vol. 375, pp. 96–101. https://doi.org/10.1016/S0009-2614(03)00823-6

    Article  CAS  Google Scholar 

  38. Dula, T., Siraj, K., and Kitte, S.A., Adv. Sci., Eng. Med., 2015, vol. 7, no. 3, pp. 205–212. https://doi.org/10.1166/asem.2015.1664

    Article  CAS  Google Scholar 

  39. Langmuir, I., J. Am. Chem. Soc., 1918, vol. 40, no. 9, pp. 1361–1368. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  40. Humelnicu, D., Drochioiu, G., Sturza, M., Cecal, A., and Popa, K., J. Radioanal. Nucl. Chem., 2006, vol. 270, pp. 637–640. https://doi.org/10.1007/s10967-006-0473-2

    Article  CAS  Google Scholar 

  41. Freundlich, H., J. Phys. Chem. A, 1906, vol. 57, pp. 385–471.

    CAS  Google Scholar 

  42. Lagergren, S., Kungliga Svenska Vetenskapsakademies Handlingar, 1898, vol. 24, no. 4, pp. 1–39.

    Google Scholar 

  43. Zhang, X., Jiao, C., Wang, J., Liu, Q., Li, R., and Yang, P., Chem. Eng. J., 2012, vol. 198, pp. 412–419. https://doi.org/10.1016/j.cej.2012.05.090

    Article  CAS  Google Scholar 

  44. Ding, L., Deng, H., Wu, C., and Han, X., Chem. Eng. J., 2012, vol. 181, pp. 360–370. https://doi.org/10.1016/j.cej.2011.11.096

    Article  CAS  Google Scholar 

  45. Bayramoglu, G. and Arica, M., Water, Air, Soil Pollut., 2011, vol. 221, pp. 391–403. https://doi.org/10.1007/s11270-011-0798-5

    Article  CAS  Google Scholar 

  46. Zhang, H., Liao, X., Ren, L., Chen, D., and Liu, X., J. Power Sources, 2015, vol. 286, pp. 258–263. https://doi.org/10.1016/j.jpowsour.2015.03.182

    Article  CAS  Google Scholar 

  47. Shao, D., Jiang, Z., Wang, X., Li, J., and Meng, Y., J. Phys. Chem. B, 2009, vol. 113, pp. 860–864. https://doi.org/10.1021/jp8091094

    Article  CAS  PubMed  Google Scholar 

  48. Wang, J., Chen, Z., Shao, D., Li, Y., Xu, Z., Cheng, C., Asiri, A., Marwani, H., and Hu, S., J. Mol. Liq., 2017, vol. 242, pp. 678–684. https://doi.org/10.1016/j.molliq.2017.07.048

    Article  CAS  Google Scholar 

  49. Gao, Y., Shao, Z., and Xiao, Z., J. Radioanal. Nucl. Chem., 2015, vol. 303, pp. 867–876. https://doi.org/10.1007/s10967-014-3385-6

    Article  CAS  Google Scholar 

  50. Han, H., Cheng, C., and Hu, S., J. Mol. Liq., 2017, vol. 234, pp. 172–178. https://doi.org/10.1016/j.molliq.2017.03.076

    Article  CAS  Google Scholar 

  51. Liu, X., Xu, Y., and Jin, R., J. Mol. Liq., 2013, vol. 200, pp. 311–318. https://doi.org/10.1016/j.molliq.2014.10.021

    Article  CAS  Google Scholar 

  52. Liu, J., Zhao, C., Tu, H., Yang, J., Li, F., Li, D., Liao, J., Yang, Y., Tang, J., and Liu, N., Appl. Clay Sci., 2017, vol. 135, pp. 64–74. https://doi.org/10.1016/j.clay.2016.09.005

    Article  CAS  Google Scholar 

  53. Liu, X., Cheng, C., Xiao, C., Xu, D., Wanb, J., Li, S., and Wang, W., Appl. Surf. Sci., 2017, vol. 411, pp. 331–337. https://doi.org/10.1016/j.apsusc.2017.03.095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bakry.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, L.A., Bakry, A.R. & Ahmad, A.A. Uranium(VI) Adsorption Using a Mixture of 1-Amino-2-naphthol-4-sulfonic Acid and Bentonite: Kinetic and Equilibrium Studies. Radiochemistry 62, 511–523 (2020). https://doi.org/10.1134/S1066362220040086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220040086

Keywords:

Navigation