Skip to main content

Advertisement

Log in

Preparation of a Composite Biosorbent Using Scenedesmus quadricauda Biomass and Alginate/Polyvinyl Alcohol for Removal of Cu(II) and Cd(II) Ions: Isotherms, Kinetics, and Thermodynamic Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, microalgae Scenedesmus quadricauda was entrapped in calcium alginate/polyvinyl alcohol composite hydrogel beads by phase-inversion techniques. The composite biosorbents were used for removal of Cu(II) and Cd(II) ions from single component and binary systems using cell-free composite beads as a control system. The effects of the experimental conditions (such as pH, initial metal ions concentrations, temperatures, contact time, and biosorbent concentrations) on Cu(II) and Cd(II) removal efficiencies were studied. The maximum metal ions on the bare and algal biomass immobilized in alginate beads were observed between pH 5.0 and 6.0. The biosorption of metal ions by the bare and composite beads increased as the initial concentration of the metal ions increased in the medium. The biosorption of Cu(II) and Cd(II) on the composite beads appears to be slightly temperature dependent. The maximum biosorptions of metal ions onto microalgae entrapped in composite beads were 0.970 ± 0.028 and 0.682 ± 0.017 mmol/g for Cu(II) and Cd(II) ions, respectively. The equilibrium experimental data for two metallic species fitted well by the Langmuir model. The values of ΔG° at all temperatures are negative, indicating the spontaneous nature of the biosorption process. When the metal ions competed (in the case of the biosorption from their mixture), the amounts of biosorption onto microalgae cells entrapped in beads were 0.857 ± 0.033 mmol/g for Cu(II) and 0.593 ± 0.024 mmol/g for Cd(II). Under noncompetitive and competitive conditions, the affinity order of ions for biosorbents was Cu(II) > Cd(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akar, T., & Tunali, S. (2006). Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresource Technology, 97, 1780–1787.

    Article  CAS  Google Scholar 

  • Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., & Tunali-Akar, S. (2009). Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 163, 1134–1141.

    Article  CAS  Google Scholar 

  • Arica, M. Y., & Bayramoglu, G. (2009). Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresource Technology, 100, 186–193.

    Article  Google Scholar 

  • Arica, M. Y., Arpa, C., Bayramoglu, G., & Genc, O. (2003). Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers, 52, 167–174.

    Article  Google Scholar 

  • Arica, M. Y., Bayramoglu, G., Yilmaz, M., Bektas, S., & Genc, O. (2004). Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Materials, 109, 191–199.

    Article  Google Scholar 

  • Artola, A., Martin, M., Balaguer, M. D., & Rigola, M. (2000). Isotherm model analysis for the adsorption of Cd(II), Cu(II), Ni(II), and Zn(II) on anaerobically digested sludge. Journal of Colloid and Interface Science, 232, 64–70.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., & Arica, M. Y. (2008). Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133–140.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., & Arica, M. Y. (2009). Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresource Technology, 100, 186–193.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., Bektas, S., & Arica, M. Y. (2003). Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 101, 285–300.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 81, 35–43.

    Article  CAS  Google Scholar 

  • Bayramoglu, G., Altintas, B., & Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation exchange resin. Chemical Engineering Journal, 152, 339–346.

    Article  CAS  Google Scholar 

  • Bhat, S. V., Melo, J. S., Chaugule, B. B., & D’Souza, S. F. (2008). Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. Journal of Hazardous Materials, 158, 628–635.

    Article  CAS  Google Scholar 

  • Cabuk, A., Akar, T., Tunali, S., & Tabak, O. (2006). Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). Journal of Hazardous Materials, 136, 317–323.

    Article  CAS  Google Scholar 

  • Chang, Y.-C., & Chen, D.-H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. Journal of Colloid and Interface Sciences, 283, 446–451.

    Article  CAS  Google Scholar 

  • Crist, R. H., Oberholser, K., Shank, N., & Nguyen, M. (1981). Nature of bonding between metallic ions and algal cell walls. Environmental Science & Technology, 15, 1212–1217.

    Article  CAS  Google Scholar 

  • de-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101, 1611–1627.

    Article  CAS  Google Scholar 

  • Dunnick, J. K., & Fowler, B. A. (1988). In H. G. Seiler & H. Siger (Eds.), Handbook on toxicity of inorganic compounds. New York: Marcel Dekker.

    Google Scholar 

  • Dwivedi, S., Srivastava, S., Mishra, S., Kumar, A., Tripathi, R. D., Rai, U. N., et al. (2010). Characterization of native microalgal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. Journal of Hazardous Materials, 173, 95–101.

    Article  CAS  Google Scholar 

  • Fagundes-Klen, M. R., Veit, M. T., Borba, C. E., Bergamasco, R., de Lima Vaz, L. G., & da Silva, E. A. (2010). Copper biosorption by biomass of marine alga: study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column. Water Air Soil Pollution, 213, 15–26.

    Article  CAS  Google Scholar 

  • Farooq, U., Kozinski, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresource Technology, 101, 5043–5053.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Adsorption in solution. Zeitschrift für physikalische Chemie, 40, 1361–1368.

    Google Scholar 

  • Genc, O., Soysal, L., Bayramoglu, G., Arica, M. Y., & Bektas, S. (2003). Procion green H-4G immobilized poly(2-hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal. Journal of Hazardous Materials, 97, 111–125.

    Article  CAS  Google Scholar 

  • Guillen-Jimenez, F. M., Netzahuatl-Munoz, A. R., Morales-Barrera, L., & Cristiani-Urbina, E. (2009). Hexavalent chromium removal by Candida sp. in a concentric draft-tube airlift bioreactor. Water Air Soil Pollution, 204, 43–51.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.-A comparative study. Colloids and Surfaces B: Biointerfaces, 64, 170–178.

    Article  CAS  Google Scholar 

  • Hashimoto, S., & Furukawa, K. (1986). Immobilization of activated sludge by PVA–boric acid method. Bioresource Technology, 30, 52–59.

    Google Scholar 

  • Hassan, C. M., & Peppas, N. A. (2000). Cellular, PVA hydrogels produced by freeze/thawing. Journal of Applied Polymer Science, 76, 2075–2079.

    Article  CAS  Google Scholar 

  • Horsfall, M., & Spiff, A. I. (2005). Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electronic Journal of Biotechnology, 8, 162–169.

    Article  Google Scholar 

  • Huag, A., Larsen, B., & Smidsrod, O. (1974). Uronic acid sequence in alginate from different sources. Carbohydrate Research, 32, 217–225.

    Article  Google Scholar 

  • Jalali, R., Ghafourian, H., Asef, Y., Davarpanah, S. J., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92, 253–262.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Lei, Z., Yu, T., Ai-Zhong, D., & Jin-Sheng, W. (2008). Adsorption of Cd(II), Zn(II) by extracellular polymeric substances extracted from waste activated sludge. Water Science and Technology, 58, 195–200.

    Article  Google Scholar 

  • Liu, C., Bai, R., Hong, L., & Liu, T. (2010). Functionalization of adsorbent with different aliphatic polyamines for heavy metal ion removal: characteristics and performance. Journal of Colloid and Interface Science, 345, 454–460.

    Article  CAS  Google Scholar 

  • Lourie, E., Patil, V., & Gjengedal, E. (2010). Efficient purification of heavy-metal-contaminated water by micro-algae-activated pine bark. Water Air Soil Pollution, 210, 493–500.

    Article  CAS  Google Scholar 

  • Lozinsky, V. I., & Plieva, F. M. (1998). Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 23, 227–242.

    Article  CAS  Google Scholar 

  • Lu, W.-B., Shi, J.-J., Wang, C.-H., & Chang, J.-S. (2006). Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of Hazardous Materials, 134, 80–86.

    Article  CAS  Google Scholar 

  • Mashitah, M. D., Yus Azila, Y., & Bhatia, S. (2008). Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technology, 99, 4742–4748.

    Article  CAS  Google Scholar 

  • Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., & Munoz, J. A. (2008). Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 158, 316–323.

    Article  CAS  Google Scholar 

  • Moe, S. T., Skjak-Brak, G., Elgsaeter, A., & Smidsrod, O. (1993). Swelling of covalently crosslinked alginate gels: influence of ionic solutes and nonpolar solvents. Macromolecules, 26, 3589–3597.

    Article  CAS  Google Scholar 

  • Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2009). Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World Journal of Microbiology and Biotechnology, 25, 1573–1578.

    Article  CAS  Google Scholar 

  • Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2010). Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water, Air, & Soil Pollution, 208, 17–27.

    Article  CAS  Google Scholar 

  • Nordberg, M. (1998). Metallothioneins: historical review and state of knowledge. Talanta, 46, 243–253.

    Article  CAS  Google Scholar 

  • Papageorgiou, S. K., Kouvelos, E. P., & Katsaros, F. K. (2008). Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination, 224, 293–306.

    Article  CAS  Google Scholar 

  • Pathak, T. S., Yun, J.-H., Lee, S.-J., Baek, D.-J., & Paeng, K.-J. (2009). Effect of cross-linker and cross-linker concentration on porosity, surface morphology and thermal behavior of metal alginates prepared from algae (Undaria pinnatifida). Carbohydrate Polymers, 78, 717–724.

    Article  CAS  Google Scholar 

  • Peng, Q., Liu, Y., Zeng, G., Xu, W., Yang, C., & Zhang, J. (2010). Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 177, 676–682.

    Article  CAS  Google Scholar 

  • Ritchie, A. G. (1987). Alternative to the Elovich equation for kinetics of adsorption of gases on solids. Journal of the Chemical Society, Faraday Transactions, 73, 1650–1653.

    Google Scholar 

  • Vijaya, Y., Popuri, S. R., Boddu, V. M., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72, 261–271.

    Article  CAS  Google Scholar 

  • Vinod, V. T. P., Sashidhar, R. B., Sreedhar, B., Rao, R. B., Rao, T. N., & Abraham, J. T. (2009). Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): a natural carbohydrate polymer with biosorbent properties. Carbohydrate Polymers, 78, 894–901.

    Article  CAS  Google Scholar 

  • Volesky, B., Weber, J., & Park, J. M. (2003). Continuous-flow metal biosorption in a regenerable Sargassum column. Water Research, 37, 297–306.

    Article  CAS  Google Scholar 

  • Wang, B. E., Hu, Y. Y., Xie, L., & Peng, K. (2008). Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresource Technology, 99, 794–800.

    Article  CAS  Google Scholar 

  • Xiao, X., Luo, S., Zeng, G., Wei, W., Wan, Y., Chen, L., et al. (2010). Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresource Technology, 101, 1668–1674.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulay Bayramoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayramoglu, G., Arica, M.Y. Preparation of a Composite Biosorbent Using Scenedesmus quadricauda Biomass and Alginate/Polyvinyl Alcohol for Removal of Cu(II) and Cd(II) Ions: Isotherms, Kinetics, and Thermodynamic Studies. Water Air Soil Pollut 221, 391–403 (2011). https://doi.org/10.1007/s11270-011-0798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0798-5

Keywords

Navigation