Skip to main content
Log in

Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting

  • Published:
Radiochemistry Aims and scope

Abstract

The structure of eight samples containing simulated rare earth–actinide fraction of high-level waste was studied. Samples of weight from 0.2 to 6 kg were prepared by cold crucible induction melting followed by crystallization of the melt. The target phases (britholite, pyrochlore, zirconolite, rhombic and monoclinic rare earth titanates) prevail in all the matrices; glass, zirconolite, and rutile were detected as impurities, sometimes in significant amounts. These phases do not contain waste components (rutile) or are stable in solutions (zirconolite); therefore, their presence should not impair the properties of the matrix. The possibility of controlling the phase composition of the matrix by introducing zirconium or aluminum oxide into the charge was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopyrin, A.A., Karelin, A.I., and Karelin, V.A., Tekhnologiya proizvodstva i radiokhimicheskoi pererabotki yadernogo topliva (Technology for Nuclear Fuel Production and Radiochemical Reprocessing), Moscow: Atomenergoizdat, 2006.

    Google Scholar 

  2. Myasoedov, B.F., in Materialy seminaraMezhdunarodnoe khranilishche obluchennogo yadernogo topliva” (Proc. Workshop “Int. Repository for Irradiated Nuclear Fuel”), Moscow, May 14–15, 2003, Moscow: Avangard, 2005, pp. 248–258.

    Google Scholar 

  3. Implications of partitioning and transmutation in radioactive waste management, Tech. Rep. Ser., Vienna: IAEA, 2004, no. 435.

  4. Aleksandrov, V.I., Osiko, V.V., Prokhorov, A.M. and Tatarintsev, V.M., Vestn. Akad. Nauk SSSR, 1973, no. 2, p. 29–39.

    Google Scholar 

  5. Vlasov, V.I., Kedrovskii, O.L., Nikiforov, A.S., et al., in Back End of the Nuclear Fuel Cycle: Strategies and Options: SM-294/3, Vienna: IAEA, 1987, pp. 109–116.

    Google Scholar 

  6. Nikiforov, A.S., Polyakov, A.S., Borisov, G.B., et al., Radioaktivnye otkhody. Problemy i resheniya (Radioactive Waste: Problems and Solutions), Moscow: Yadernoe Obshchestvo, 1992, pp. 260–268.

    Google Scholar 

  7. Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., and Omel’yanenko, B.I., Geoekologiya, 1996, no. 2, p. 58–74.

    Google Scholar 

  8. Stefanovskii, S.V., Yudintsev, S.V., Nikonov, B.S., et al., Dokl. Earth Sci., 1998, vol. 360, no. 4, pp. 533–536.

    Google Scholar 

  9. Demine, A.V., Krylova, N.V., Poluektov, P.P., et al., Mater. Res. Soc. Symp. Proc., 2001, vol. 663, pp. 27–33.

    Article  Google Scholar 

  10. Stefanovsky, S.B., Lashchenova, T.N., Knyazev, O.A., et al., Vopr. Radiats. Bezopasn., 2003, no. 2, p. 3–11.

    Google Scholar 

  11. Gotovchikov, V.T., Seredenko, V.A., and Osipov, I.V., Tsvetn. Met., 2003, no. 2, p. 68–72.

    Google Scholar 

  12. Stefanovsky, S.V., Ptashkin, A.G., Knyazev, O.A., et al., Fiz. Khim. Obrab. Mater., 2008, no. 2, p. 18–25.

    Google Scholar 

  13. Ringwood, A.E., Miner. Mag., 1985, vol. 49, part 2, pp. 159–176.

    Article  CAS  Google Scholar 

  14. Glagovskii, E.M., Yudintsev, S.V., Kuprin, A.V., et al., Radiochemistry, 2001, vol. 43, no. 6, pp. 632–638.

    Article  CAS  Google Scholar 

  15. Laverov, N.P., Yudintsev, S.V., Konovalov, E.E., et al., Radiochemistry, 2012, vol. 54, no. 5, pp. 511–515.

    Article  CAS  Google Scholar 

  16. Orlova, A.I., Troshin, A.N., Mikhailov, D.A., et al., Radiochemistry, 2014, vol. 56, no. 1, pp. 98–104.

    Article  CAS  Google Scholar 

  17. Xie, Z.M., Liu, R., Fang, Q.F., et al., J. Nucl. Mater., 2014, vol. 444, pp. 175–180.

    Article  CAS  Google Scholar 

  18. Stefanovsky, S.V., Nikonov, B.S., Omel’yanenko, B.I., et al., Fiz. Khim. Obrab. Mater., 1997, no. 2, p. 111–117.

    Google Scholar 

  19. Smelova, T.V., Krylova, N.V., Yudintsev, S.V., and Nikonov, B.S., Dokl. Earth Sci., 2000, vol. 374, no. 7, pp. 1149–1152.

    Google Scholar 

  20. Laverov, N.P., Yudintsev, S.V., Stefanovskii, S.V., et al., Radiochemistry, 2011, vol. 53, no. 3, pp. 229–243.

    Article  CAS  Google Scholar 

  21. Laverov, N.P., Velichkin, V.I., Omel’yanenko, B.I., et al., Izolyatsiya otrabotavshikh yadernykh materialov: geologo-geokhimicheskie osnovy (Isolation of Spent Nuclear Materials: Geological and Geochemical Principles), Moscow: Inst. Fiziki Zemli, 2008.

    Google Scholar 

  22. Shoup, S.S., Bamberger, C.E., Haverlock, T.J., and Peterson, J.R., J. Nucl. Mater., 1997, vol. 240, pp. 112–117.

    Article  CAS  Google Scholar 

  23. Yudintsev, S.V., Aleksandrova, E.V., Livshits, T.S., et al., Dokl. Earth Sci., 2014, vol. 458, no. 2, pp. 1281–1284.

    Article  CAS  Google Scholar 

  24. PDFWIN-2, Newton Square, PA (USA): Int. Center for Diffraction Data, 1999.

    Google Scholar 

  25. Stefanovsky, S.V., Knyazev, I.A., Myasoedov, B.F., et al., Fiz. Khim. Obrab. Mater., 2013, no. 2, p. 70–75.

    Google Scholar 

  26. Yudintsev, S.V., Gotovchikov, V.T., Omel’yanenko, B.I., et al., Geoekologiya, 2013, no. 2, p. 383–392.

    Google Scholar 

  27. Yudintsev, S.V., Stefanovsky, S.V., and Nikonov, B.S., Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 54–58.

    Article  CAS  Google Scholar 

  28. Shoup, S.S., Bamberger, C.E., Tyree, J.L., and Anovitz, L.M., J. Solid State Chem., 1996, vol. 127, pp. 231–239.

    Article  CAS  Google Scholar 

  29. Ewing, R.C., Weber, W.J., and Lian, J., J. Appl. Phys., 2004, vol. 95, no. 11, pp. 5949–5971.

    Article  CAS  Google Scholar 

  30. Subramanian, M.A., Aravamundan, G., and Subba Rao, G.V., Prog. Solid State Chem., 1983, vol. 15, pp. 55–143.

    Article  CAS  Google Scholar 

  31. Whittle, K.R., Lumpkin, G.R., Blackford, M.G., et al., J. Solid State Chem., 2010, vol. 183, pp. 2416–2420.

    Article  CAS  Google Scholar 

  32. Zhang, F.X., Lian, J., Becker, U., et al., J. Solid State Chem., 2007, vol. 180, pp. 571–576.

    Article  CAS  Google Scholar 

  33. Harvey, E.J., Whittle, K.R., Lumpkin, G.R., et al., J. Solid State Chem., 2005, vol. 178, pp. 800–810.

    Article  CAS  Google Scholar 

  34. Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., and Ewing, R.Ch., Dokl. Earth Sci., 2012, vol. 443, no. 2, pp. 526–531.

    Article  CAS  Google Scholar 

  35. Gong, W. and Zhang, R., J. Alloys Compd., 2013, vol. 548, pp. 216–221.

    Article  CAS  Google Scholar 

  36. Gong, W. and Zhang, R., Thermochim. Acta, 2012, vol. 534, pp. 28–32.

    Article  CAS  Google Scholar 

  37. Stefanovsky, S.V., Chizhevskaya, S.V., Mironov, A.S., et al., Perspekt. Mater., 2003, no. 2, p. 61–68.

    Google Scholar 

  38. Morris, R.E., Owen, J.J., and Cheetham, A.K., J. Phys. Chem. Solids, 1995, vol. 56, pp. 1297–1303.

    Article  CAS  Google Scholar 

  39. Hessen, B., Sunshine, S.A., Siegrist, T., and Van Dover, R.B., J. Solid State Chem., 1993, vol. 105, pp. 107–111.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Original Russian Text © S.V. Yudintsev, S.V. Stefanovsky, M.Yu. Kalenova, B.S. Nikonov, M.S. Nikol’skii, A.M. Koshcheev, A.S. Shchepin, 2015, published in Radiokhimiya, 2015, Vol. 57, No. 3, pp. 272–282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Stefanovsky, S.V., Kalenova, M.Y. et al. Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting. Radiochemistry 57, 321–333 (2015). https://doi.org/10.1134/S1066362215030133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362215030133

Keywords

Navigation