Skip to main content
Log in

Morphological and Structural Features of Iron Oxide-Based Nanoparticle Formation under Arc Vacuum Sputtering

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ferrite Fe3O4 nanoparticles have been formed in low-pressure arc discharge plasma. It has been shown that the obtained nanoparticles have an average size of 9.4 nm and a blocking temperature of 89 K, crystallize in the magnetite phase, and are superparamagnetic at room temperature. The features in the behavior of nanoparticles in a magnetic field related to their large specific surface are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Ali, H. Zafar, M. Zia, I. Ul Haq, A. R. Phull, J. S. Ali, and A. Hussain, Nanotechnol. Sci. Appl. 9, 49 (2016). https://doi.org/10.2147/NSA.S99986

    Article  Google Scholar 

  2. I. Skumiel, J. Magn. Magn. Mater. 307, 85 (2006). https://doi.org/10.1016/j.JMMM.2006.03.045

    Article  ADS  Google Scholar 

  3. A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. De-ger, S. Loening, W. Lanksch, and R. Felix, J. Magn. Magn. Mater. 255, 118 (2001).https://doi.org/10.1016/S0304-8853(02)00801-6

    Article  ADS  Google Scholar 

  4. M. H. Khedr and A. A. Farghali, Appl. Catal. B 61, 219 (2005). https://doi.org/10.1016/j.apcatb.2005.05.004

    Article  Google Scholar 

  5. I. N. Reddy, A. Sreedhar, Ch. V. Reddy, J. Shim, M. Cho, D. Kim, J. S. Gwag, and K. Yoo, J. Solid State Electrochem. 22, 3535 (2018). https://doi.org/10.1007/s10008-018-4054-4

    Article  Google Scholar 

  6. K. R. Wierzbinski, T. Szymanski, N. Rozwadowska, J. D. Rybka, A. Zimna, T. Zalewski, K. Nowicka-Bauer, A. Malcher, M. Nowaczyk, M. Krupinski, M. Fiedorowicz, P. Bogorodzki, P. Grieb, M. Giersig, and M. K. Kurpisz, Sci. Rep. 8, 3682 (2018). https://doi.org/10.1038/s41598-018-22018-0

    Article  ADS  Google Scholar 

  7. N. V. Srikanth Vallabani and S. Singh, Biotechnology 8, 279 (2018). https://doi.org/10.1007/s13205-018-1286-z

    Google Scholar 

  8. M. M. Lin, D. K. Kim, A. J. El Haj, and J. Dobson, IEEE Trans. Nanobiosci. 7, 298 (2008). https://doi.org/10.1109/TNB.2008.2011864

    Article  Google Scholar 

  9. J. B. Mamani, L. F. Gamarra, and G. E. de Souza Brito, Mater. Res. 17 (2014). https://doi.org/10.1590/S1516-14392014005000050

  10. A. V. Ushakov, I. V. Karpov, and A. A. Lepeshev, Phys. Solid State 57, 2320 (2015).

    Article  ADS  Google Scholar 

  11. A. A. Lepeshev, A. V. Ushakov, I. V. Karpov, D. A. Ba-laev, A. A. Krasikov, A. A. Dubrovskiy, D. A. Veli-kanov, and M. I. Petrov, J. Supercond. Nov. Magn. 30, 931 (2017). https://doi.org/10.1007/s10948-016-3885-4

    Article  Google Scholar 

  12. A. A. Lepeshev, E. A. Rozhkova, I. V. Karpov, A. B. Ushakov, and L. Yu. Fedorov, Phys. Solid State 55, 2531 (2013).

    Article  ADS  Google Scholar 

  13. A. A. Lepeshev, O. A. Bayukov, E. A. Rozhkova, I. V. Karpov, A. B. Ushakov, and L. Yu. Fedorov, Phys. Solid State 57, 255 (2015).

    Article  ADS  Google Scholar 

  14. A. V. Ushakov, I. V. Karpov, and A. A. Lepeshev, Tech. Phys. 61, 260 (2016).

    Article  Google Scholar 

  15. A. A. Lepeshev, I. V. Karpov, A. V. Ushakov, L. Yu. Fe-dorov, and A. A. Shaikhadinov, Int. J. Nanosci. 15, 1550027 (2016). https://doi.org/10.1142/S0219581X15500271

    Article  Google Scholar 

  16. L. Yu. Fedorov, I. V. Karpov, A. V. Ushakov, and A. A. Lepeshev, Inorg. Mater. 51, 25 (2015).

    Article  Google Scholar 

  17. S. R. Ahmed, S. B. Ogale, G. C. Papaefthymiou, R. Ramesh, and P. Kofinas, Appl. Phys. Lett. 80, 1616 (2002). https://doi.org/10.1063/1.1456258

    Article  ADS  Google Scholar 

  18. I. V. Karpov, A. V. Ushakov, A. A. Lepeshev, and L. Yu. Fedorov, Tech. Phys. 62, 168 (2017). https://doi.org/10.21883/JTF.2017.01.1851

    Article  Google Scholar 

  19. A. N. Kolmogorov, USSR Rep. Acad. Sci. 31, 99 (1941).

    Google Scholar 

  20. D. I. Ryzhonkov, Ultra-Dispersed Medium. Production of Nanopowders by Chemical Dispersion and their Properties (Moscow, 2007) [in Russian].

  21. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  22. I. P. Suzdalev, Dinamic Effects in Gamma-Resonance Spectroscopy (Moscow, 1979) [in Russian].

    Google Scholar 

  23. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003). https://doi.org/10.1063/1.1599959

    Article  ADS  Google Scholar 

  24. F. Bodker, S. Morup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994). https://doi.org/10.1103/PhysRevLett.72.282

    Article  ADS  Google Scholar 

  25. R. K. Zheng, H. Gu, B. Xu, and X. X. Zhang, J. Phys.: Condens. Matter 18, 5905 (2006). https://doi.org/10.1088/0953-8984/18/26/010

    ADS  Google Scholar 

  26. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. A 240, 599 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-48-242005, the Government of the Krasnoyarsk Krai and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project “Mathematical Modeling of Interrelated Physical Properties in Dynamic Arc-Vacuum Reactor Plasma Systems.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Ushakov, A.V., Fedorov, L.Y. et al. Morphological and Structural Features of Iron Oxide-Based Nanoparticle Formation under Arc Vacuum Sputtering. Phys. Solid State 61, 1180–1186 (2019). https://doi.org/10.1134/S106378341907014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341907014X

Navigation