Skip to main content
Log in

Magnetron sputtering issues concerning growth of magnetic films: a technical approach to background, solutions, and outlook

  • Invited Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetron sputtering is a very versatile technique extensively employed for the deposition/growth of thin films. However, the deposition of desirable magnetic films is one of the challenges confronting magnetron sputtering owing to the shunting of magnetic flux by magnetic targets in conventional magnetron sputtering equipment. This flux shunting culminates in lower plasma density, non-uniform plasma confinement, and uneven erosion of magnetic targets, adversely affecting the growing films’ thickness uniformity and chemical homogeneity—the latter can be particularly serious in magnetron co-sputtering. In this article, it is discussed that these issues can be avoided by cylindrical sputtering. As for planar sputtering, formerly offered technical solutions including the utilization of thin foils as magnetic targets, the deployment of gapped targets somewhat allowing the magnetic flux of the magnetron assembly, the employment of a target heating system increasing a magnetic target’s temperature greater than or equal to its Curie temperature, facing target sputtering, magnetron sputtering assisted by coupled plasma inductively generated in an internal coil, and the generation of plasma remotely from magnetic targets (i.e., high target utilization sputtering) are scrutinized with their advantages/disadvantages being further examined. Finally, it is discussed that not only can auxiliary grid deployment mitigate/remove the issues of planar magnetron sputtering by modifying spatial plasma density distribution near the target but also it can solely shoulder the responsibility of ionization enhancement and plasma confinement for deposition of magnetic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. K. Wasa, M. Kitabatake, H. Adachi, in Thin Film Materials Technology. Sputtering of Compound Materials (William Andrew Publishing, 2004), pp. 71–114. https://doi.org/10.1016/B978-081551483-1.50004-6

  2. B.N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York, 1980)

    Google Scholar 

  3. A. Kosari Mehr, M.R. Zamani Meymian, A. Kosari Mehr, Ceram. Int. 44, 21825 (2018)

    Google Scholar 

  4. A. Kosari Mehr, R. Babaei, A.K. Mehr, M.R. Zamani Meymian, Surf. Eng. 37, 148 (2021)

    Google Scholar 

  5. A. Kosari Mehr, A. Kosari Mehr, R. Babaei, Surf. Coat. Technol. 427, 127855 (2021)

    Google Scholar 

  6. D.B. Fraser, H.D. Cook, J. Vac. Sci. Technol. 14, 147 (1998)

    ADS  Google Scholar 

  7. J.E. Greene, J. Vac. Sci. Technol. A Vac. Surf. Film. 35, 05C204 (2017)

    Google Scholar 

  8. J.L. Vossen, J. Vac. Sci. Technol. 8, S12 (2000)

    Google Scholar 

  9. G. Bräuer, B. Szyszka, M. Vergöhl, R. Bandorf, Vacuum 84, 1354 (2010)

    ADS  Google Scholar 

  10. M. Lorenz, J. Zhang, A.G. Shard, J.L. Vorng, P.D. Rakowska, I.S. Gilmore, Anal. Chem. 93, 3436 (2021)

    Google Scholar 

  11. C.R. Das, M. Rangwala, A. Ghosh, Surf. Coat. Technol. 458, 129351 (2023)

    Google Scholar 

  12. A. Dan, E.F. Antunes, C. Yung, N. Tomlin, M. Stephens, J. Lehman, Appl. Phys. A Mater. Sci. Process. 129, 1 (2023)

    Google Scholar 

  13. D. Vavassori, F. Mirani, F. Gatti, D. Dellasega, M. Passoni, Surf. Coat. Technol. 458, 129343 (2023)

    Google Scholar 

  14. D. Lundin, J. T. Gudmundsson, T. Minea, High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications (Elsevier, 2019). https://doi.org/10.1016/C2016-0-02463-4

  15. J.J. Olaya, S.E. Rodil, S. Muhl, E. Sánchez, Thin Solid Films 474, 119 (2005)

    ADS  Google Scholar 

  16. J.J. Olaya, S.E. Rodil, S. Muhl, Thin Solid Films 516, 8319 (2008)

    ADS  Google Scholar 

  17. J.T. Gudmundsson, Plasma Sources Sci. Technol. 29, 113001 (2020)

    ADS  Google Scholar 

  18. L. Oksuz, N. Hershkowitz, Plasma Sources Sci. Technol. 14, 201 (2005)

    ADS  Google Scholar 

  19. J.P. Boeuf, Phys. Plasmas 26, 072113 (2019)

    ADS  Google Scholar 

  20. B. Alterkop, S. Goldsmith, R.L. Boxman, Contrib. Plasma Phys. 45, 485 (2005)

    ADS  Google Scholar 

  21. Y. Takagi, Y. Sakashita, H. Toyoda, H. Sugai, Vacuum 80, 581 (2006)

    ADS  Google Scholar 

  22. P.J. Ryan, J.W. Bradley, M.D. Bowden, Phys. Plasmas 26, 073515-1 (2019). https://doi.org/10.1063/1.5109621

  23. J.T. Gudmundsson, J. Fischer, B.P. Hinriksson, M. Rudolph, D. Lundin, Surf. Coat. Technol. 442, 128189 (2022)

    Google Scholar 

  24. J.T. Gudmundsson, J. Phys. Conf. Ser. 100, 082013 (2008)

    Google Scholar 

  25. L. Oksuz, N. Hershkowitz, Phys. Lett. A 375, 2162 (2011)

    ADS  Google Scholar 

  26. L.C. Fontana, J.L.R. Muzart, Surf. Coat. Technol. 107, 24 (1998)

    Google Scholar 

  27. C. Wu, J. Jin, Frontiers in Magnetic Materials (CRC Press, 2022), pp. 9–27. https://doi.org/10.1201/9781003216346

  28. J.M.D. Coey, in Handbook of Magnetism and Magnetic Materials, vol. 1, 2 (Springer, Cham, 2021), pp. 3–51. https://doi.org/10.1007/978-3-030-63210-6_1

  29. S.B. Roy, Experimental Techniques in Magnetism and Magnetic Materials (Cambridge University Press, 2023)

  30. A.N. Vasiliev, O.S. Volkova, E.A. Zvereva, M.M. Markina, Low-Dimensional Magnetism, 1st edn. (2019)

  31. T. Thomson, in Metallic Films for Electronic, Optical and Magnetic Applications (2014), pp. 454–546. https://doi.org/10.1533/9780857096296.2.454

  32. D. Cao, Q. Zou, W. Shi, Y. Zhang, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Google Scholar 

  33. N.B. Ibrahim, Y. Noratiqah, M.F.A. Jailani, E.R. Iruthayaraj, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Google Scholar 

  34. S. Vorobiov, O. Pylypenko, Y. Bereznyak, I. Pazukha, E. Čižmár, M. Orendáč, V. Komanicky, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Google Scholar 

  35. C. Gao, C. Cao, J. Zhao, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Google Scholar 

  36. S. Celozzi, R. Araneo, P. Burghignoli, G. Lovat, Electromagnetic Shielding (2022), p. 459. https://doi.org/10.1002/9781119736318.app2

  37. P.N. Burrows, C. Gohil, P.N. Burrows, N.B. Kraljevic, D. Schulte, B. Heilig, J. Instrum. 15, P12030 (2020)

    Google Scholar 

  38. K. Nakamura, T. Yamada, Y. Ohta, A. Itoh, IEEE Trans. Magn. 18, 1080 (1982)

    ADS  Google Scholar 

  39. B. Window, F. Sharples, J. Vac. Sci. Technol. A Vac. Surf. Film. 3, 10 (1998)

    ADS  Google Scholar 

  40. K. Sato, ACS Omega 7, 40480 (2022)

    Google Scholar 

  41. M. Testa-Anta, C.H. Lambert, C.O. Avci, Adv. Electron. Mater. 9, 2300044 (2023)

    Google Scholar 

  42. W. Wang, Q. Han, L. Tang, J. Tian, C. Kang, Thin Solid Films 780, 139964 (2023)

    ADS  Google Scholar 

  43. W. Li, R. Tanaka, T. Usami, T. Gao, T. Harumoto, Y. Nakamura, J. Shi, Mater. Lett. 311, 131615 (2022)

    Google Scholar 

  44. H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 95, 7387 (2004)

    ADS  Google Scholar 

  45. W.S. Yang, T.H. Sun, S.C. Chen, S.U. Jen, H.J. Guo, M.H. Liao, J.R. Chen, J. Alloys Compd. 803, 341 (2019)

    Google Scholar 

  46. M. Kateb, H. Hajihoseini, J.T. Gudmundsson, S. Ingvarsson, J. Phys. D. Appl. Phys. 51, 285005 (2018)

    Google Scholar 

  47. A. Tayal, M. Gupta, A. Gupta, V. Ganesan, L. Behera, S. Singh, S. Basu, Surf. Coat. Technol. 275, 264 (2015)

    Google Scholar 

  48. M. Rudolph, N. Brenning, H. Hajihoseini, M.A. Raadu, T.M. Minea, A. Anders, J.T. Gudmundsson, D. Lundin, J. Phys. D. Appl. Phys. 55, 015202 (2021)

    ADS  Google Scholar 

  49. A. Iljinas, J. Dudonis, R. Bručas, A. Meškauskas, Nonlinear Anal. Model Control 10, 57 (2005)

    Google Scholar 

  50. C. Li, X. Tian, C. Gong, J. Xu, Vacuum 133, 98 (2016)

    ADS  Google Scholar 

  51. P. Yang, C.S. Ren, D.Z. Wang, X.L. Qi, S.H. Guo, T.C. Ma, Vacuum 83, 1376 (2009)

    ADS  Google Scholar 

  52. B.B. Meckel, E.I. Bromley, US4324631A—Magnetron sputtering of magnetic materials (Google Patents, 1982). https://patents.google.com/patent/US4324631A/en. Accessed 29 Aug 2023

  53. K.K. Ho, G.P. Carman, Thin Solid Films 370, 18 (2000)

    ADS  Google Scholar 

  54. D.V. Sidelev, G.A. Bleykher, V.A. Grudinin, V.P. Krivobokov, M. Bestetti, M.S. Syrtanov, E.V. Erofeev, Surf. Coat. Technol. 334, 61 (2018)

    Google Scholar 

  55. K. Okimura, J. Oyanagi, J. Vac. Sci. Technol. A Vac. Surf. Film. 22, 39 (2003)

    ADS  Google Scholar 

  56. M. Vopsaroiu, K. O’Grady, M.T. Georgieva, P.J. Grundy, M.J. Thwaites, IEEE Trans. Magn. 41, 3253 (2005)

    ADS  Google Scholar 

  57. A. Kosari Mehr, M.R. Hantehzadeh, E. Darabi, Int. J. Appl. Ceram. Technol. 16, 966 (2019)

    Google Scholar 

  58. F.M. Penning, Physica 3, 873 (1936)

    ADS  Google Scholar 

  59. D.A. Glocker, in Proceedings, Annual Technical Conference—Society of Vacuum Coaters (1995), pp. 298–302

  60. T. Motomura, T. Tabaru, E-J. Surf. Sci. Nanotechnol. 17, 27 (2019)

    Google Scholar 

  61. D.V. Sidelev, V.P. Krivobokov, Vacuum 160, 418 (2019)

    ADS  Google Scholar 

  62. D.V. Sidelev, G.A. Bleykher, V.P. Krivobokov, Z. Koishybayeva, Surf. Coat. Technol. 308, 168 (2016)

    Google Scholar 

  63. I.A. Sorokin, D.V. Kolodko, Vacuum 207, 111570 (2023)

    ADS  Google Scholar 

  64. V. Linss, M. Bivour, H. Iwata, K. Ortner, in AIP Conf. Proc. (American Institute of Physics Inc., 2019). https://doi.org/10.1063/1.5123836

  65. V. Izai, T. Fiantok, M. Vidiš, M. Truchlý, L. Satrapinskyy, Š Nagy, T. Roch, V. Turiničová, P. Kúš, M. Mikula, Thin Solid Films 765, 139643 (2023)

    ADS  Google Scholar 

  66. S. Ladak, L.E. Fernández-Outón, K. O’Grady, J. Appl. Phys. 103, 07B514 (2008)

    Google Scholar 

  67. D. Tran, High Target Utilisation Sputtering for the Development of Advanced Materials for Magnetic Data Storage Applications (University of Exeter, Exeter, 2012)

    Google Scholar 

  68. K. Takahashi, T. Saito, A. Ando, Y. Yabuta, H. Mizuguchi, N. Yamamoto, R. Kamei, S. Hara, Vacuum 171, 109000 (2020)

    ADS  Google Scholar 

  69. O. Akdogan, N.M. Dempsey, J. Appl. Phys. 115, 17E508 (2014)

    Google Scholar 

  70. A. Saadi, R. Moubah, H. Lassri, A. El Amiri, Y. Boughaleb, I. Bimaghra, E.K. Hlil, Phys. A Stat. Mech. Appl. 516, 340 (2019)

    Google Scholar 

  71. I. Jouanny, A. Billard, T.H. Loi, V. Demange, E. Bauer-Grosse, Surf. Coat. Technol. 200, 1690 (2005)

    Google Scholar 

  72. J.L. Costa-Krämer, J.L. Menéndez, A. Cebollada, F. Briones, D. García, A. Hernando, J. Magn. Magn. Mater. 210, 341 (2000)

    ADS  Google Scholar 

  73. J. Neamtu, J. Magn. Magn. Mater. 157–158, 461 (1996)

    ADS  Google Scholar 

  74. R. Krishnan, H.O. Gupta, C. Sella, M. Kaabouchi, J. Magn. Magn. Mater. 93, 174 (1991)

    ADS  Google Scholar 

  75. R. Minakata, IEEE Trans. Magn. 23, 3236 (1987)

    ADS  Google Scholar 

  76. R. Minakata, T. Kira, M. Yoshikawa, IEEE Transl. J. Magn. Jpn. 1, 500 (1985)

    Google Scholar 

  77. R. Minakata, IEEE Trans. Magn. 24, 2020 (1988)

    ADS  Google Scholar 

  78. A. Kosari Mehr, A. Kosari Mehr, Plasma Chem. Plasma Process. 41(3), 713 (2021). https://doi.org/10.1007/s11090-021-10165-8

    Google Scholar 

  79. J.C. Sagás, L.C. Fontana, H.S. MacIel, Vacuum 85, 705 (2011)

    ADS  Google Scholar 

  80. H.W.S. Barros, D.A. Duarte, J.C. Sagás, Thin Solid Films 696, 137762 (2020)

    ADS  Google Scholar 

  81. J.C. Sagás, R.S. Pessoa, H.S. Maciel, Braz J. Phys. 48, 61 (2018)

    ADS  Google Scholar 

  82. F.C. da Silva, M.A. Tunes, P.D. Edmondson, N.B. Lima, J.C. Sagás, L.C. Fontana, C.G. Schön, SN Appl. Sci. 2, 1 (2020)

    Google Scholar 

  83. A. Kosari Mehr, A. Kosari Mehr, Ceram. Int. 48, 4921 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Alberto Tagliaferri and Mahnaz Khorshidi Tatafi profusely for their unstinting support. We are also truly grateful to Dr. Oksana Koplak for sharing some of her experiences and interesting reads concerning magnetic materials.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AKM: idea, writing—original draft, writing—review and editing, conceptualization, literature search, data analysis, and visualization. AKM: conceptualization, literature search, critical review and editing, and validation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ali Kosari Mehr.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosari Mehr, A., Kosari Mehr, A. Magnetron sputtering issues concerning growth of magnetic films: a technical approach to background, solutions, and outlook. Appl. Phys. A 129, 662 (2023). https://doi.org/10.1007/s00339-023-06945-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06945-y

Keywords

Navigation