Skip to main content
Log in

Large-Amplitude Shock Electromagnetic Wave in a Nonlinear Transmission Line Based on a Distributed Semiconductor Diode

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The problem of the formation and propagation of a large-amplitude shock electromagnetic wave in a strip transmission line (TL) based on a distributed semiconductor diode is analytically solved. The solution correctly considers its nonlinearity, dissipation, and time dispersion. The results of the theory are used to estimate the parameters of the TL as a sharpener of the pulse front voltage applied to the line input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. The multiplier ξ is close to unity; it is equal to 0.8 for Si and 0.96 for 4H-SiC (see Fig. 4).

REFERENCES

  1. R. Landauer, IBM J. Res. Develop. 4, 391 (1960).

    Article  MathSciNet  Google Scholar 

  2. R. V. Khokhlov, Radiotekh. Elektron. 6, 916 (1961).

    Google Scholar 

  3. I. G. Kataev, Shock Electromagnetic Waves (Sov. Radio, Moscow, 1963) [in Russian].

    Google Scholar 

  4. L. A. Morugin and G. V. Glebovich, Nanosecond Pulsed Technique (Sov. Radio, Moscow, 1964) [in Russian].

    Google Scholar 

  5. A. V. Gaponov, L. A. Ostrovskii, and G. I. Freidman, Izv. Vyssh. Uchebn. Zaved., Radiofiz., No. 10, 1378 (1967).

  6. P. W. Smith, Transient Electronics. Pulsed Circuit Technology (Wiley, Chichester, 2002).

    Google Scholar 

  7. L. A. Vainshtein, Electromagnetic Waves (Radio Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  8. S. T. Peng and R. Landauer, IBM J. Res. Develop. 17, 299 (1973).

    Article  Google Scholar 

  9. R. Owens, S. Eng, and G. White, Proc. IEE 113, 1763 (1966).

  10. E. Cumberbatch, SIAM J. Appl. Math. 15, 450 (1967).

    Article  Google Scholar 

  11. S. K. Mullick, IBM J. Res. Develop. 11, 558 (1967).

    Article  Google Scholar 

  12. D. Jäger, IEEE Trans. Microwave Theory Technol. 24, 566 (1976).

    Article  ADS  Google Scholar 

  13. M. M. Turner, G. Branch, and P. W. Smith, IEEE Trans. Electron Dev. 38, 810 (1991).

    Article  ADS  Google Scholar 

  14. A. S. Kyuregyan and S. N. Yurkov, Sov. Phys. Semicond. 23, 1126 (1989).

    Google Scholar 

  15. A. S. Kyuregyan, Semiconductors 50, 289 (2016).

    Article  ADS  Google Scholar 

  16. M. V. Fischetti and S. E. Laux, Phys. Rev. B 38, 9721 (1988).

    Article  ADS  Google Scholar 

  17. A. Akturk, N. Goldsman, S. Potbhare, and A. Lelis, J. Appl. Phys. 105, 033703 (2009).

    Article  ADS  Google Scholar 

  18. H. Guckel, P. A. Brennan, and I. Palócz, IEEE Trans. Microwave Theory Technol. 15, 468 (1967).

    Article  ADS  Google Scholar 

  19. H. Hasegawa, M. Furukawa, and H. Yanai, IEEE Trans. Microwave Theory Technol. 19, 869 (1971).

    Article  ADS  Google Scholar 

  20. G. W. Hughes and R. M. White, IEEE Trans. Electron Dev. 22, 945 (1975).

    Article  ADS  Google Scholar 

  21. D. F. Williams, IEEE Trans. Microwave Theory Technol. 47, 176 (1999).

    Article  ADS  Google Scholar 

  22. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

    MATH  Google Scholar 

  23. A. S. Kyuregyan, Zh. Radioelektron., No. 10 (2018). http://jre.cplire.ru/jre/oct18/9/text.pdf.

Download references

ACKNOWLEDGMENTS

I am grateful to A.V. Gorbatyuk and O.V. Rudenko for fruitful discussions of the evolution processes of nonlinear distributed systems.

This study was supported by the Russian Foundation for Basic Research, project no. 16-08-01292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kyuregyan.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyuregyan, A.S. Large-Amplitude Shock Electromagnetic Wave in a Nonlinear Transmission Line Based on a Distributed Semiconductor Diode. Semiconductors 53, 511–518 (2019). https://doi.org/10.1134/S1063782619040171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619040171

Navigation