Skip to main content
Log in

Electrostatic THz Excitation in Semiconductor Plasmas

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The THz spectrum excited by an external electron beam is studied in semiconductor systems. The beam electrons interact with the medium particles to excite a wave at the cyclotron frequency. The dispersion relation of the THz spectrum is obtained by employing the quantum magneto-hydrodynamic (QMHD) model for the semiconductor species, which includes quantum features like Landau quantization of Fermi statistical pressure. It is noticed that the dispersion relation verifies the excitation of THz electron cyclotron waves (ECWs) at a typical set of real-time parameters of GaAs semiconductor plasmas. The features of the THz spectrum vary with varying angles of propagation \(\theta \) that exist between the wave vector k of the spectrum and the ambient magnetic field \(B_0\), the streaming speed of the electron beam \(u_{0}\) directed into the plasma system parallel to wave vector k, the thermal effects of beam electrons, and the gyro frequency dependent on \(B_0\) rooted in the expression of Landau quantization. As for the application, this study is helpful to understand semiconductor device technology. The semiconductors are used to generate the THz range by continuous waves or pulse waves [1] although they face a lot of technical difficulties in the laboratory [2]. A theoretical model is presented here for the excitation of continuous plasma waves [3], employing the data of GaAS semiconductors for the THz range [4]. The authors believe that this study may increase our theoretical understanding to meet the growing demand for THz bandwidth for experimental purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing was not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zomega: The Terahertz Wave Ebook. Zomega THz Corporation. (2012).

  2. Yun-Shik, L.: Principles of Terahertz Science and Technology. Springer, USA (2009)

    Google Scholar 

  3. Shur, M.: Plasma wave terahertz electronics. Electronic Letts. 46(26), 18 (2010). https://doi.org/10.1049/el.2010.8457

    Article  Google Scholar 

  4. Ajayan, J.; Nirmal, D.; Mohankumar, P.; Kuriyan, D.; Fletcher, A.S.A.; Arivazhagan, L.; Kumar, B.S.: GaAs metamorphic high electron mobility transistors for future deep space-biomedical-millitary and communication system applications: A review. Microelectronics J. 92, 104604 (2019)

    Article  Google Scholar 

  5. Yang, Sh.; Wang, Sh.; Wang, Zh.; Zhang, P.; Xia, Yux; Tang, Ch.; Gong, Yu.: Terahertz radiation generated by electron-beam-driven plasma waves in a transverse external magnetic field’. Phys. Plasmas 29, 053106 (2022)

  6. Malik, P.; Sharma, S.C.; Sharma, R.: Coherent terahertz radiation from beam-driven upper hybrid wave in magnetostatic plasma. J. Electromag. Waves Appl. 32(17), 2195 (2018)

    Article  Google Scholar 

  7. Mann, K.L.; Sajal, V.; Panwar, A.: Excitation of terahertz radiation by parametric mixing of four waves in magnetized plasma. Optik 186, 182 (2019)

    Article  Google Scholar 

  8. Pickwell, E.: Biomedical applications of terahertz technology. J. Phys. D 39, R301 (2006)

    Article  Google Scholar 

  9. Xu, W.; Xie, L.; Ying, Y.: Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9, 13864 (2017)

    Article  Google Scholar 

  10. Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D.: THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), S266 (2005)

    Article  Google Scholar 

  11. Kleine-Ostmann, T.; Nagatsuma, T.: A review on terahertz communications research. J. Infrared, Millimeter, Terahertz Waves 32(2), 143 (2011)

  12. Faure, J.; Tilborg, J.V.; Kanidal, R.A.; Leemans, W.P.: Modeling laser-based table-top THz sources: Optical rectification, propagation and electro-optic sampling. Opt. Quant. Electron. 36, 681 (2004)

    Article  Google Scholar 

  13. Matsuura, S.; Tani, M.; Sakai, K.: Generation of coherent terahertz radiation by photo mixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559 (1997)

    Article  Google Scholar 

  14. Chen, Z.; Zhou, X.; Werley, C.A.; Nelson, A.K.: Generation of high power tunable multicycle teraherz pulses. Appl. Phys. Lett. 99, 071102 (2011)

    Article  Google Scholar 

  15. Shen, Y.C.; Upadhyay, P.C.; Beere, H.E.; Linfield, E.H.: Tuning quantum-cascade lasers by postgrowth rapid thermal processing. Appl. Phys. Lett. 84, 164 (2004)

    Article  Google Scholar 

  16. Vodopyanov, K.L.: Optical THz wave generation with periodically inverted GaAs. Laser Photon. Rev. 2, 11 (2008)

    Article  Google Scholar 

  17. Bhasin, L.: Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasmas 16, 103105 (2009)

    Article  Google Scholar 

  18. Varshney, P.; Sajal, V.; Singh, K.P.; Kumar, R.; Sharma, N.K.: Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337 (2013)

    Article  Google Scholar 

  19. Singh, R.K.; Singh, M.; Rajouria, S.K.; Sharma, R.P.: High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma. Phys. Plasmas 24, 103103 (2017)

    Article  Google Scholar 

  20. Varshney, P.; Sajal, V.; Baliyan, S.; Sharma, N.K.; Chauhan, P.: Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in magnetized plasma. Laser Part. Beams 33, 51 (2014)

    Article  Google Scholar 

  21. Varshney, P.; Sajal, V.; Upadhyay, A.; Chakera, J.A.; Kumar, R.: Tunable terahertz radiation generation by nonlinear photomixing of cosh-Gaussian laser pulses in corrugated magnetized plasma. Laser Part. Beams 35, 279 (2017)

    Article  Google Scholar 

  22. Mann, K.L.; Sajal, V.; Sharma, N.K.: Excitation of terahertz radiation generation by obliquely incident beating lasers on a hot magnetized plasma with step density profil. Laser Part. Beams 35, 528 (2017)

    Article  Google Scholar 

  23. Ding, Y.J.; Shi, W.: Efficient THz generation and frequency upconversion in GaP crystals. Solid State Electron 50, 1128 (2006)

    Article  Google Scholar 

  24. Dyakonov, M.I.; Shur, M.S.: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. on Electron Devices 43, 380 (1996)

    Article  Google Scholar 

  25. Sirtori, C.: Bridge for the terahertz gap. Nature 417, 132 (2002)

    Article  Google Scholar 

  26. Loffler, T.; Jacob, F.; Roskos, H.G.: Generation of terahertz pulses by photoionization of electrically biased air. Appl. Phys. Lett. 77, 453 (2000)

    Article  Google Scholar 

  27. Smetanin, I.V.; Han, H.: Resonance selective excitation of terahertz plasma waves in a semiconductor quantum well using two-color laser radiation. J. Russian Laser Res. 22(5), 403 (2001)

    Article  Google Scholar 

  28. Huang, Y.C.: Desktop megawatt superradiant free-electron laser at terahertz frequencies. Appl. Phys Lett. 96(23), 231503 (2010)

    Article  Google Scholar 

  29. Stix, T. H.: Waves in Plasmas (AIP, New York, 1992), 2nd Ed.

  30. Castro, J.; McQuillen, P.; Killian, T.C.: Ion acoustic waves in ultracold neutral plasmas. PRL 105, 065004 (2010)

    Article  Google Scholar 

  31. Shukla, P.K.; Eliasson, B.: Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885 (2011)

    Article  Google Scholar 

  32. Ghosh, S.; Khare, P.: Acousto-electric wave instability in ion-implanted semiconductor plasmas. Eurp. Phys. J. D 35, 521 (2005)

    Article  Google Scholar 

  33. Ghosh, S.; Khare, P.: Acoustic wave amplification in ion-implanted piezoelectric semiconductor. Ind. J. Pure Appl. Phys. 44, 183 (2006)

    Google Scholar 

  34. Kumar, G.; Tripathi, V.K.: Filamentation of a surface plasma wave over a semiconductor-free space interface. J. Appl. Phys 102, 123301 (2007)

    Article  Google Scholar 

  35. Klein, C.A.: Further remarks on electron beam pumping of laser materials. Appl. Opt. 5, 1922 (1966)

    Article  Google Scholar 

  36. Yahia, M.E.; Azzouz, I.M.; Moslem, W.M.: Quantum effects in electron beam pumped GaAs. Appl. Phys. Lett. 103, 082105 (2013)

    Article  Google Scholar 

  37. Rasheed, A.; Jamil, M.; Areeb, F.; Siddique, M.; Salimullah, M.: Low frequency hybrid instability in quantum magneto semiconductor plasmas. J. Phys. D: Appl. Phys 49, 175109 (2016)

    Article  Google Scholar 

  38. Landau, L.D.; Lifshitz, E.M.: Statistical Physics I. Pergamon, New York (1980)

    Google Scholar 

  39. Tsintsadze, L.N.; Eliasson, B.; Shukla, P.K.: Quantization and excitation of longitudinal electrostatic waves in magnetized quantum plasmas. AIP Conf Proc 1306, 89–102 (2010). https://doi.org/10.1063/1.3533197

    Article  Google Scholar 

  40. Bernstein, I.B.: Waves in a plasma in a magnetic field. Phys. Rev 109, 10 (1958)

    Article  MathSciNet  Google Scholar 

  41. Dnestrovskii, Y.N.; Kostomarov, D.P.: Dispersion equation for an ordinary wave moving in a plasma perpendicular toan external magnetic field. Sov. Phys. JETP. 13, 986 (1961)

    Google Scholar 

  42. Dnestrovskii, Y.N.: Electromagnetic waves in a half-space filled with a plasma. Sov. Phys. JETP 14, 1089 (1961)

    MathSciNet  Google Scholar 

  43. Buchsbaum, S.J.: Excitation of longitudinal plasma oscillations near electron cyclotron harmonics. Phys. Rev. Lett. 12, 685 (1964)

    Article  Google Scholar 

  44. Crawford, F. W.; Tataronis, J. A.: “A review of cyclotron harmonic phenomenon in plasmas” Microwave Laboratory Report No.1295, Stanford University, Stanford, Calif(1965).

  45. Crawford, F.W.: A review of cyclotron harmonic phenomena in plasmas. Nucl. Fusion 5, 73 (1965)

    Article  Google Scholar 

  46. Stone, P.M.; Auer, P.L.: Excitation of electrostatic waves near electron cyclotron harmonic frequencie. Phys. Rev. 138A, 695 (1965)

    Article  Google Scholar 

  47. Canobbio, E.: Harmonics of the electron gyro frequency in plasmas. Phys. Fluids 9, 549 (1966)

    Article  Google Scholar 

  48. Shkarofsky, I.P.: Dielectric tensor in Vlasov plasmas near cyclotron harmonics. Phys. Fluids 9, 561 (1966)

    Article  Google Scholar 

  49. Fredricks, R.W.: Structure of the Bernstein modes for large values of the plasma parameter. J. Plasma Phys. 2, 197 (1968)

    Article  Google Scholar 

  50. Shkarofsky, I.P.: Higher order cyclotron harmonic resonances and their observation in the laboratory and in the ionosphere. J. Geophys. Res. 73, 4859 (1968)

    Article  Google Scholar 

  51. Kaladze, T.D.; Lominadze, D.G.; Stepanov, K.N.: Dispersion of cyclotron waves in a plasma. Sov. Phys. Tech. Phys. 17, 196 (1972)

    Google Scholar 

  52. Sugaya, R.; Sugawa, M.: Electron cyclotron damping of Bernstein waves in plasmas. Phys. Lett 44(A), 135 (1973)

  53. Hoffman, J.M.; Aamodt, R.E.: Radiation coupling of Bernstein modes in a ring plasma. Phys. Fluids 20, 1544 (1977)

    Article  Google Scholar 

  54. Lominadze, D.G.: Cyclotron Waves in Plasma, p. 9. Pergamon Press, Oxford (1981)

    Google Scholar 

  55. Puri, S.; Leuterer, F.; Tutter, M.: The totality of waves in a homogeneous Vlasov plasma. J. Plasma Phys. 14, 169 (2009)

    Article  Google Scholar 

  56. Buchsbaum, S.J.; Hasegawa, A.: Longitudinal plasma oscillations near electron cyclotron harmonics. Phys. Rev. 143, 303 (1966)

    Article  Google Scholar 

  57. Ancona, M.G.; Iafrate, G.J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536 (1989)

    Article  Google Scholar 

  58. Gardner, C.: The quantum hydrodynamic model for semiconductor devices. SIAM .J. Appl. Math. 54, 409 (1994)

  59. Gasser, I.: Quantum hydrodynamics, Wigner transforms, the classical limit. Asymptotic Anal 14, 97 (1997)

    Article  MathSciNet  Google Scholar 

  60. Gardner, C.L.; Ringhofer, C.: The Chapman-Enskog expansion and the quantum hydrodynamic model for semiconductor devices. VLSI Design 10(4), 415 (2000)

    Article  Google Scholar 

  61. Manfredi, G.: Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316 (2001)

  62. Haas, F.; Garcia, L.G.; Goedert, J.: Quantum ion-acoustic waves. Phys. Plasmas 10, 3858 (2003)

    Article  Google Scholar 

  63. Khan, Arroj A.; Jamil, M.; Hussain, A.: Wake potential with exchange-correlation effects in semiconductor quantum plasmas. Phys. Plasmas 22, 092103 (2015)

  64. Gasser, I.; Lin, C.K.; Markowich, P.: A review of dispersive limits of (non) linear schr odinger-type equations. Taiwanese. J. Math. 4, 501 (2000)

    Article  MathSciNet  Google Scholar 

  65. Luscombe, J.H.; Bouchard, A.M.; Luban, M.: Electron confinement in quantum nanostructures: self-consistent Poisson-Schr dinger theory. Phys. Rev. B 46, 10262 (1992)

    Article  Google Scholar 

  66. Zeba, I.; Yahia, M.E.; Shukla, P.K.; Moslem, W.M.: Electron-hole two-stream instability in a quantum semiconductor plasma with exchange-correlation effects. Phys. Lett. A 376, 2309 (2012)

    Article  Google Scholar 

  67. Jamil, M.; Rasheed, A.; Rozina, C.; Moslem, W.M.; Salimullah, M.: Beam driven upper-hybrid-wave instability in quantized semiconductor plasmas. Phys. Plasmas 21, 020704 (2014)

    Article  Google Scholar 

  68. Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.: Hole-cyclotron instability in semiconductor quantum plasmas. Phys. Plasmas 25, 02111 (2018)

    Google Scholar 

  69. Liu, K.; Xu, J.; Yuan, T.; Zhang, X.C.: Terahertz radiation from InAs induced by carrier diffusion and drift. Phys Rev. B 73, 155330 (2006)

    Article  Google Scholar 

  70. Ropagnol, X.; Kovács, Z.; Gilicze, B.; Zhuldybina, M.; Blanchard, F.; Garcia-Rosas, C.M.; Szatmári, S.; Földes, I.B.; Ozaki, T.: Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers. New. J. Phys. 21, 113042 (2019)

    Article  Google Scholar 

  71. Leitenstorfer, A.; Moskalenko, A.S.; Kampfrath, T.; et al.: The 2023 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 56, 223001 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jamil.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areeb, F., Rasheed, A., Sumera, P. et al. Electrostatic THz Excitation in Semiconductor Plasmas. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09151-x

Keywords

Navigation