Skip to main content
Log in

Investigation of InGaAs/GaAs Quantum Well Lasers with Slightly Doped Tunnel Junction

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We experimentally investigate and analyze the electrical and optical characteristics of InGaAs/GaAs conventional quantum well laser diode and the quantum well laser diode with slightly-doped tunnel junction. It was found that the laser with slightly-doped tunnel junction has a nonlinear S-shape current-voltage characteristic. The internal quantum efficiencies of the laser with slightly-doped tunnel junction and the conventional laser are 21 and 87.3%, respectively. This suggests that the slightly-doped tunnel junction increased the barrier width and free carrier absorption, thus could reduce the electron tunneling probability and increase the internal loss. Furthermore, compared with the conventional laser, it was found that we could achieve 15 nm broadband spectrum from the laser with slightly-doped tunnel junction, due to the lasing dynamics reflecting the current dynamics. The results show that the slightly-doped tunnel junction plays a crucial role in the laser diode performances, which may lead to the realization of more applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Esaki, Phys. Rev. 109, 603 (1958).

    Article  ADS  Google Scholar 

  2. J. P. van der Ziel and W. T. Tsang, Appl. Phys. Lett. 41, 499 (1982).

    Article  ADS  Google Scholar 

  3. J. Yan, J. Cai, G. Ru, et al., in Proceedings of the Conference on Lasers and Electro-Optics, 2006.

  4. J. Mi, H. Yu, H. Wang, et al., IEEE Photon. Technol. Lett. 27, 169 (2015).

    Article  ADS  Google Scholar 

  5. M. Shirdel and M. A. Mansouri-Birjandi, Front. Optoelectron. 9 (4), 1 (2016).

    Article  Google Scholar 

  6. F. Ricci, R. A. Rica, M. Spasenovic, et al., Nat. Commun. 8, 15141 (2017).

    Article  ADS  Google Scholar 

  7. E. Yousefi and M. Hatami, Optik (Munich, Ger.) 125, 6637 (2014).

  8. T. Mori, Y. Sato, and H. Kawaguchi, J. Lightwave Technol. 26, 2946 (2008).

    Article  ADS  Google Scholar 

  9. S. O. Slipchenko, A. A. Podoskin, V. V. Vasil’eva, et al., Semiconductors 48, 697 (2014).

    Article  ADS  Google Scholar 

  10. K. Hara, K. Kojima, K. Mitsunaga, et al., Opt. Lett. 15, 749 (1990).

    Article  ADS  Google Scholar 

  11. W. K Chan and A. C. von Lehmen, US Patent No. 5132982 (1992).

  12. F. R. Beyette, K. M. Geib, S. A. Feld, et al., IEEE Photon. Technol. Lett. 5, 686 (1993).

    Article  ADS  Google Scholar 

  13. A. G. Kirk, H. Thienpont, A. Goulet, et al., IEEE Photon. Technol. Lett. 8, 464 (1996).

    Article  ADS  Google Scholar 

  14. H. Wang, X. Zhou, H. Yu, et al., Appl. Phys. Lett. 104, 251101 (2014).

    Article  ADS  Google Scholar 

  15. H. Wang, H. Yu, X. Zhou, et al., Appl. Phys. Lett. 105, 141101 (2014).

    Article  ADS  Google Scholar 

  16. S. W. Wang, R. H. Wu, Q. G. Zhu, et al., Chin. J. Laser. 129, 306 (1980).

    ADS  Google Scholar 

  17. G. W. Taylor and H. Opper, IEEE J. Quantum Electron. 53 (3), 1 (2017).

    Article  Google Scholar 

  18. H. Wang, J. Mi, X. Zhou, et al., Opt. Lett. 38, 4868 (2013).

    Article  ADS  Google Scholar 

  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, Chichester, 1995).

    Google Scholar 

  20. S. O. Slipchenko, A. A. Podoskin, A. V. Rozhkov, et al., J. Appl. Phys. 116, 819 (2014).

    Article  Google Scholar 

  21. J. Pan, L. Zhen, H. Wang, et al., in Proceedings of the International Conference on Optical Communications and Networks, 2015.

Download references

ACKNOWLEDGMENTS

We thank all the teachers and students in the PIC group of the Key Laboratory of Semiconductor Materials Science for their help.

The study was supported by the National Key Research and Development Program of China under grant no. 2017YFB0405301, and the National Natural Science Foundation of China under grant no. 61604144, grant no. 61504137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaoqing Pan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yajie Li, Wang, P., Meng, F. et al. Investigation of InGaAs/GaAs Quantum Well Lasers with Slightly Doped Tunnel Junction. Semiconductors 52, 2017–2021 (2018). https://doi.org/10.1134/S1063782618160169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618160169

Keywords:

Navigation