Skip to main content
Log in

A record-breaking low turn-on voltage blue QLED via reducing built-in potential

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing light-emitting diodes (LEDs) with the merits of low driving and high brightness has always been attractive. Considering the carrier dynamic process under electroexcitation, the built-in potential (Vbi) represents the moment that the photons start to be produced in a LED. However, it has not been carefully studied and discussed. Here, we observed that by employing an interface regulation strategy to enhance hole concentration, the Vbi of quantum dot LEDs (QLEDs) can be reduced. Combined with the characterization methods of Mott–Schottky (MS) and scanning Kelvin probe microscopy (SKPM), the key indicator of Vbi on driving voltage for QLEDs is confirmed. Profiting from the reduction of Vbi, a record-breaking ultra-low turn-on voltage of 2.2 V (@1 cd/m2) is achieved in a blue QLED. The blue QLED shows an advantage of high brightness under low driving voltages, i.e., 1000 cd/m2@3.10 V and 5000 cd/m2@3.88 V. This work proposes a reference strategy to predict and analyze the driving voltage issue, which is beneficial to facilitating the development of low-driving QLEDs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nathan, S.; Shammas, N.; Grainger, S. Energy saving using light emitting diodes in lighting applications. In Proceedings of the 41st International Universities Power Engineering Conference, Newcastle upon Tyne, UK, 2006, pp 960–964.

  2. Yeh, N.; Chung, J. P. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180.

    Article  CAS  Google Scholar 

  3. Ren, A. B.; Wang, H.; Zhang, W.; Wu, J.; Wang, Z. M.; Penty, R. V.; White, I. H. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 2021, 4, 559–572.

    Article  Google Scholar 

  4. Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics 2009, 3, 180–182.

    Article  CAS  Google Scholar 

  5. Nardelli, A.; Deuschle, E.; de Azevedo, L. D.; Pessoa, J. L. N.; Ghisi, E. Assessment of light emitting diodes technology for general lighting: A critical review. Renew. Sustain. Energy Rev. 2017, 75, 368–379.

    Article  CAS  Google Scholar 

  6. Wang, R.; Xiang, H. Y.; Tu, S. Y.; Li, Y.; Zhou, Y. H.; Zeng, H. B. Full solution-processed heavy-metal-free mini-QLEDs for flexible display applications. Nanoscale 2022, 14, 12736–12743.

    Article  CAS  PubMed  Google Scholar 

  7. Ren, Z. W.; Xiao, X. T.; Ma, R. M.; Lin, H.; Wang, K.; Sun, X. W.; Choy, W. C. H. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 2019, 29, 1905339.

    Article  CAS  Google Scholar 

  8. Wang, F. Z.; Wang, Z. Y.; Sun, W. D.; Wang, Z. B.; Bai, Y. M.; Hayat, T.; Alsaedi, A.; Tan, Z. A. High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 2020, 16, 2002940.

    Article  CAS  Google Scholar 

  9. Gangishetty, M. K.; Hou, S. C.; Quan, Q. M.; Congreve, D. N. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1706226.

    Article  Google Scholar 

  10. Liu, C.; Fu, Q.; Zou, Y.; Yang, C. L.; Ma, D. G.; Qin, J. G. Low turn-on voltage, high-power-efficiency, solution-processed deep-blue organic light-emitting diodes based on starburst oligofluorenes with diphenylamine end-capper to enhance the HOMO level. Chem. Mater. 2014, 26, 3074–3083.

    Article  CAS  Google Scholar 

  11. Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366.

    Article  CAS  PubMed  Google Scholar 

  12. Ji, W. Y.; Jing, P. T.; Xu, W.; Yuan, X.; Wang, Y. J.; Zhao, J. L.; Jen, A. K. Y. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phys. Lett. 2013, 103, 053106.

    Article  Google Scholar 

  13. Xie, G. H.; Meng, Y. L.; Wu, F. M.; Tao, C.; Zhang, D. D.; Liu, M. J.; Xue, Q.; Chen, W.; Zhao, Y. Very low turn-on voltage and high brightness tris-(8-Hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoOx p-doping layer. Appl. Phys. Lett. 2008, 92, 093305.

    Article  Google Scholar 

  14. Ji, W. Y.; Lv, Y.; Jing, P. T.; Zhang, H.; Wang, J.; Zhang, H. Z.; Zhao, J. L. Highly efficient and low turn-on voltage quantum dot light-emitting diodes by using a stepwise hole-transport layer. ACS Appl. Mater. Interfaces 2015, 7, 15955–15960.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H. T.; Ding, K.; Fan, L. W.; Liu, W.; Zhang, R.; Xiang, S. P.; Zhang, Q.; Wang, L. All-solution-processed quantum dot light emitting diodes based on double hole transport layers by hot spin-coating with highly efficient and low turn-on voltage. ACS Appl. Mater. Interfaces 2018, 10, 29076–29082.

    Article  CAS  PubMed  Google Scholar 

  16. Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantumdot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.

    Article  CAS  PubMed  Google Scholar 

  17. Meng, L.; Yao, E. P.; Hong, Z. R.; Chen, H. J.; Sun, P. Y.; Yang, Z. L.; Li, G.; Yang, Y. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 2017, 29, 1603826.

    Article  Google Scholar 

  18. Qiao, X. F.; Ma, D. G. Triplet–triplet annihilation effects in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit. Nat. Commun. 2019, 10, 4683.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, X.; Wu, X. M.; Zheng, J. J.; Rui, H. S.; Zhang, Z.; Hua, Y. L.; Yin, S. G. Enhanced performance of green perovskite quantum dots light-emitting diode based on co-doped polymers as hole transport layer. IEEE Electron Device Lett. 2019, 40, 1479–1482.

    Article  CAS  Google Scholar 

  21. Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

    Article  CAS  Google Scholar 

  22. Seidel, W.; Titkov, A.; André, J. P.; Voisin, P.; Voos, M. High-efficiency energy up-conversion by an “Auger fountain” at an InP-AIInas type-II heterojunction. Phys. Rev. Lett. 1994, 73, 2356–2359.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan, S.; Liu, Q. W.; Tian, Q. S.; Jin, Y.; Wang, Z. K.; Liao, L. S. Auger effect assisted perovskite electroluminescence modulated by interfacial minority carriers. Adv. Funct. Mater. 2020, 30, 1909222.

    Article  CAS  Google Scholar 

  24. Tu, L. Y.; Tang, X. T.; Wang, Y.; Zhao, X.; Ma, C. H.; Ye, S. N.; Xiong, Z. H. Dynamic behaviors of exciplex states in rubrene/C60-based OLEDs with sub-band-gap turn-on electroluminescence. Phys. Rev. Appl. 2021, 16, 064002.

    Article  CAS  Google Scholar 

  25. Xiang, C. Y.; Peng, C.; Chen, Y.; So, F. Origin of sub-bandgap electroluminescence in organic light-emitting diodes. Small 2015, 11, 5439–5443.

    Article  CAS  PubMed  Google Scholar 

  26. Sadi, T.; Radevici, I.; Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photonics 2020, 14, 205–214.

    Article  CAS  Google Scholar 

  27. Li, J. L.; Liang, Z.; Su, Q. C.; Jin, H.; Wang, K. L.; Xu, G.; Xu, X. Q. Small molecule-modified hole transport layer targeting low turn-on-voltage, bright, and efficient full-color quantum dot light emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3865–3873.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, T.; Wang, F. Z.; Sun, W. D.; Wang, Z. B.; Zhang, J.; You, B. G.; Li, Y.; Hayat, T.; Alsaed, A.; Tan, Z. A. High-performance blue quantum dot light-emitting diodes with balanced charge injection. Adv. Electron. Mater. 2019, 5, 1800794.

    Article  Google Scholar 

  29. Qu, X. W.; Zhang, N.; Cai, R.; Kang, B. N.; Chen, S. M.; Xu, B.; Wang, K.; Sun, X. W. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Appl. Phys. Lett. 2019, 114, 071101.

    Article  Google Scholar 

  30. Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

    Article  CAS  Google Scholar 

  31. Yao, Z. W.; Bi, C. H.; Liu, A. Q.; Zhang, M. Q.; Tian, J. J. High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film. Nano Energy 2022, 95, 106974.

    Article  CAS  Google Scholar 

  32. Jiang, Y. Z.; Sun, C. J.; Xu, J.; Li, S. S.; Cui, M. H.; Fu, X. L.; Liu, Y.; Liu, Y. Q.; Wan, H. Y.; Wei, K. Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 2022, 612, 679–684.

    Article  CAS  PubMed  Google Scholar 

  33. Park, Y. R.; Kim, H. H.; Eom, S.; Choi, W. K.; Choi, H.; Lee, B. R.; Kang, Y. Luminance efficiency roll-off mechanism in CsPbBr3−xCLx mixed-halide perovskite quantum dot blue light-emitting diodes. J. Mater. Chem. C 2021, 9, 3608–3619.

    Article  CAS  Google Scholar 

  34. Pan, J. Y.; Zhao, Z. H.; Fang, F.; Wang, L. X.; Wang, G. Z.; Liu, C. J.; Chen, J.; Xie, J.; Sun, J. Y.; Wang, K. et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light-emitting diodes. Adv. Opt. Mater. 2020, 8, 2001494.

    Article  CAS  Google Scholar 

  35. Bi, Y. H.; Cao, S.; Yu, P.; Du, Z. T.; Wang, Y. J.; Zheng, J. J.; Zou, B. S.; Zhao, J. L. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 2023, 19, 2303247.

    Article  CAS  Google Scholar 

  36. Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

    Article  CAS  Google Scholar 

  37. Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Y. S.; Wang, Z.; Chen, J. W.; Peng, Y.; Tang, X. S.; Liang, Z. S.; Qi, F.; Chen, W. W. Tuning hole transport layers and optimizing perovskite films thickness for high efficiency CsPbBr3 nanocrystals electroluminescence light-emitting diodes. J. Lumin. 2021, 234, 117952.

    Article  CAS  Google Scholar 

  39. Hu, L. F.; Ye, Z. X.; Wu, D.; Wang, Z. J.; Wang, W. G.; Wang, K.; Cui, X. Q.; Wang, N.; An, H. Y.; Li, B. B. et al. Marked efficiency improvement of FAPb0.7Sn0.3Br3 perovskite light-emitting diodes by optimization of the light-emitting layer and hole-transport layer. Nanomaterials 2022, 12, 1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, B. Y.; Ji, W. Y.; Duan, Z. Q.; Sheng, Y.; Wang, T.; Yuan, Q. L.; Zhang, H.; Tang, X. S.; Zhang, H. Z. Low turn-on voltage and highly bright Ag-In-Zn-S quantum dot light-emitting diodes. J. Mater. Chem. C 2018, 6, 4683–4690.

    Article  CAS  Google Scholar 

  42. Berleb, S.; Brütting, W.; Paasch, G. Interfacial charges and electric field distribution in organic hetero-layer light-emitting devices. Org. Electron. 2000, 1, 41–47.

    Article  CAS  Google Scholar 

  43. Shmshad, A.; Tang, J. L.; Muhammad, I.; Han, D. B.; Zhang, X.; Chang, S.; Shi, Q. F.; Zhong, H. Z. Illustrating the shell thickness dependence in alloyed core/shell quantum-dot-based light-emitting diodes by impedance spectroscopy. J. Phys. Chem. C 2019, 123, 26011–26017.

    Article  CAS  Google Scholar 

  44. Zhang, X. L.; Huang, H. H.; Ling, X. F.; Sun, J. G.; Jiang, X. Y.; Wang, Y.; Xue, D.; Huang, L. Z.; Chi, L. F.; Yuan, J. Y. et al. Homojunction perovskite quantum dot solar cells with over 1 µmthick photoactive layer. Adv. Mater. 2022, 34, 2105977.

    Article  CAS  Google Scholar 

  45. Brütting, W.; Berleb, S.; Mückl, A. G. Device physics of organic light-emitting diodes based on molecular materials. Org. Electron. 2001, 2, 1–36.

    Article  Google Scholar 

  46. Worku, M.; Ben-Akacha, A.; Sridhar, S.; Frick, J. R.; Yin, S. C.; He, Q. Q.; Robb, A. J.; Chaaban, M.; Liu, H.; Winfred, J. S. R. V. et al. Band edge control of quasi-2D metal halide perovskites for blue light-emitting diodes with enhanced performance. Adv. Funct. Mater. 2021, 31, 2103299.

    Article  CAS  Google Scholar 

  47. Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.

    Article  CAS  Google Scholar 

  48. Nowy, S.; Ren, W.; Elschner, A.; Lövenich, W.; Brütting, W. Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes. J. Appl. Phys. 2010, 107, 054501.

    Article  Google Scholar 

  49. Zhang, M. Y.; Chen, Q.; Xue, R. M.; Zhan, Y.; Wang, C.; Lai, J. Q.; Yang, J.; Lin, H. Z.; Yao, J. L.; Li, Y. W. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 2019, 10, 4593.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, Q.; Mao, L.; Li, Y. W.; Kong, T.; Wu, N.; Ma, C. Q.; Bai, S.; Jin, Y. Z.; Wu, D.; Lu, W. et al. Quantitative operando visualization of the energy band depth profile in solar cells. Nat. Commun. 2015, 6, 7745.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was from the National Key Research and Development Program of China (No. 2022YFB3606502), the National Natural Science Foundation of China (Nos. 52131304, 62004101, 62261160392, and 22022205), Jiangsu graduate and practice innovation program (No. KYCX23_0456), and the Fundamental Research Funds for the Central Universities (No. 30920041117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hengyang Xiang, Qi Chen or Haibo Zeng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xiang, H., Zhang, C. et al. A record-breaking low turn-on voltage blue QLED via reducing built-in potential. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6570-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6570-0

Keywords

Navigation