Skip to main content
Log in

Tight-binding simulation of silicon and germanium nanocrystals

  • Review
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

This review is devoted to the modeling of Si and Ge nanocrystals by means of the tight-binding method. First we give the short outline of the modeling methods and their application for the discription of silicon and germanium nanocrystals. Then, the tight-binding method with extended s, p, d, and s* basis is explained in details and the results obtained with the use of this method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).

    Article  ADS  Google Scholar 

  2. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  3. P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, J. Phys.: Condens. Matter 5 (7), L91 (1993).

    ADS  Google Scholar 

  4. P. Calcott, K. Nash, L. Canham, M. Kane, and D. Brumhead, J. Luminesc. 57, 257 (1993).

    Article  Google Scholar 

  5. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Status Solidi B 215, 871 (1999).

    Article  ADS  Google Scholar 

  6. O. Gusev, A. Poddubny, A. Prokofiev, and I. Yassievich, Semiconductors 47, 183 (2013).

    Article  ADS  Google Scholar 

  7. R. T. Lorenzo Pavesi, Silicon Nanocrystals: Fundamentals, Synthesis and Applications, 2nd ed. (Wiley, New York, 2010).

    Book  Google Scholar 

  8. L. Pavesi, L. dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).

    Article  ADS  Google Scholar 

  9. O. Boyraz and B. Jalali, Opt. Express 12, 5269 (2004).

    Article  ADS  Google Scholar 

  10. F. Priolo, T. Gregorkiewicz, T. Galli, et al., Nat. Nanotechnol. 9, 19 (2014).

    Article  ADS  Google Scholar 

  11. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, Nat. Photon. 2, 105 (2008).

    Article  ADS  Google Scholar 

  12. E. de Jong, S. Saeed, W. Sinke, and T. Gregorkiewicz, Sol. Energy Mater. Solar Cells 135, 67 (2015).

    Article  Google Scholar 

  13. S. Saeed, E. M. L. D. de Jong, K. Dohnalova, and T. Gregorkiewicz, Nat. Commun. 5, 4665 (2014).

    Article  Google Scholar 

  14. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).

    Article  ADS  Google Scholar 

  15. S. Kim, S. Won Hwang, S.-H. Choi, R. G. Elliman, Y.-M. Kim, and Y.-J. Kim, J. Appl. Phys. 105, 106112 (2009).

    Article  ADS  Google Scholar 

  16. M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Nat. Photon. 7, 466 (2013).

    Article  ADS  Google Scholar 

  17. R. Chivas, S. Yerci, R. Li, L. D. Negro, and T. Morse, Opt. Mater. 33, 1829 (2011).

    Article  ADS  Google Scholar 

  18. M. O. Nestoklon, A. N. Poddubny, P. Voisin, and K. Dohnalova, J. Phys. Chem. C 120, 18901 (2016).

    Article  Google Scholar 

  19. S. Ossicini, M. Amato, R. Guerra, M. Palummo, and O. Pulci, Nanoscale Res. Lett. 5, 1637 (2010).

    Article  ADS  Google Scholar 

  20. I. Marri, M. Govoni, and S. Ossicini, Sol. Energy Mater. Solar Cells 145, 162 (2016).

    Article  Google Scholar 

  21. N. Garcia-Castello, S. Illera, R. Guerra, J. D. Prades, S. Ossicini, and A. Cirera, Phys. Rev. B 88, 075322 (2013).

    Article  ADS  Google Scholar 

  22. I. Marri, M. Govoni, and S. Ossicini, Beilstein J. Nanotechnol. 6, 343 (2015).

    Article  Google Scholar 

  23. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, 1st ed. (Les Editions de Physique, Les Ulis, 1988).

    Google Scholar 

  24. E. L. Ivchenko and G. E. Pikus, Superlattices and other Heterostructures: Symmetry and Optical Phenomena, 1st ed. (Springer, 2005).

    MATH  Google Scholar 

  25. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, 1st ed. (Alpha Science Int., UK, 1995).

    Google Scholar 

  26. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, 2nd ed. (Dover, New York, 1989).

    Google Scholar 

  27. J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).

    Article  ADS  Google Scholar 

  28. G. Bester, J. Phys.: Condens. Matter 21, 023202 (2009).

    ADS  Google Scholar 

  29. K. A. Mäder and A. Zunger, Phys. Rev. B 50, 17393 (1994).

    Article  ADS  Google Scholar 

  30. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  Google Scholar 

  31. P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).

    Article  ADS  Google Scholar 

  32. A. V. Podolskiy and P. Vogl, Phys. Rev. B 69, 233101 (2004).

    Article  ADS  Google Scholar 

  33. D. J. Chadi and M. L. Cohen, Phys. Status Solidi B 68, 405 (1975).

    Article  ADS  Google Scholar 

  34. D. J. Chadi, Phys. Rev. B 16, 790 (1977).

    Article  ADS  Google Scholar 

  35. Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Phys. Rev. B 79, 245201 (2009).

    Article  ADS  Google Scholar 

  36. B. Goller, S. Polisski, H. Wiggers, and D. Kovalev, Appl. Phys. Lett. 97, 041110 (2010).

    Article  ADS  Google Scholar 

  37. C. Delerue and M. Lannoo, Nanostructures Theory and Modeling (Springer, Berlin, Heidelberg, 2004).

    Google Scholar 

  38. A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Appl. Phys. Lett. 97, 231116 (2010), Appl. Phys. Lett. 102, 169903(R) (2013).

    Article  ADS  Google Scholar 

  39. O. Gusev, A. Poddubny, A. Prokofiev, and I. N. Yassievich, Semiconductors 47, 183 (2013).

    Article  ADS  Google Scholar 

  40. A. V. Gert, A. A. Prokofiev, and I. N. Yassievich, Phys. Status Solidi A 213, 2879 (2016).

    Article  ADS  Google Scholar 

  41. T. A. Halgren, J. Comput. Chem. 17, 490 (1996).

    Article  Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16, Rev. A.03 (Gaussian Inc., Wallingford, CT, 2016).

    Google Scholar 

  43. A. Dargis and J. Zimaniene, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science Encyclopedia, Vilnus, 1994).

    Google Scholar 

  44. N. A. Hill and K. B. Whaley, J. Electron. Mater. 25, 269 (1996).

    Article  ADS  Google Scholar 

  45. K. C. Pandey, Phys. Rev. B 14, 1557 (1976).

    Article  ADS  Google Scholar 

  46. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, CA, 1980).

    Google Scholar 

  47. K. Dohnalova, A. N. Poddubny, A. A. Prokofiev, W. D. de Boer, C. P. Umesh, J. M. Paulusse, H. Zuilhof, and T. Gregorkiewicz, Light: Sci. Appl. 2, e47 (2013).

    Article  Google Scholar 

  48. A. S. Moskalenko, J. Berakdar, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 76, 085427 (2007).

    Article  ADS  Google Scholar 

  49. C. Bulutay, Phys. Rev. B 76, 205321 (2007).

    Article  ADS  Google Scholar 

  50. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000).

    Article  ADS  Google Scholar 

  51. Y. Maeda, Phys. Rev. B 51, 1658 (1995).

    Article  ADS  Google Scholar 

  52. M. d’Avezac, J.-W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett. 108, 027401 (2012).

    Article  ADS  Google Scholar 

  53. D. A. Ruddy, P. T. Erslev, S. E. Habas, J. A. Seabold, and N. R. Neale, J. Phys. Chem. Lett. 4, 416 (2013).

    Article  Google Scholar 

  54. L. Zhang, M. d’Avezac, J.-W. Luo, and A. Zunger, Nano Lett. 12, 984 (2012).

    Article  ADS  Google Scholar 

  55. Y. Guo, C. E. Rowland, R. D. Schaller, and J. Vela, ACS Nano 8, 8334 (2014).

    Article  Google Scholar 

  56. C. G. van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  ADS  Google Scholar 

  57. S. Saeed, F. Buters, K. Dohnalova, L. Wosinski, and T. Gregorkiewicz, Nanotechnology 25, 405705 (2014).

    Article  Google Scholar 

  58. C.-S. Yang, S. M. Kauzlarich, and Y. C. Wang, Chem. Mater. 11, 3666 (1999).

    Article  Google Scholar 

  59. M. Buljan, S. R. C. Pinto, A. G. Rolo, J. Martín-Sánchez, M. J. M. Gomes, J. Grenzer, A. Mücklich, S. Bernstorff, and V. Holý, Phys. Rev. B 82, 235407 (2010).

    Article  ADS  Google Scholar 

  60. L. E. Ramos, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 72, 045351 (2005).

    Article  ADS  Google Scholar 

  61. E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, G. A. Farias, and F. M. Peeters, J. Phys. Chem. C 116, 4399 (2012).

    Article  Google Scholar 

  62. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, Phys. Rev. B 60, 2704 (1999).

    Article  ADS  Google Scholar 

  63. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara, and B. A. Korgel, Nano Lett. 2, 681 (2002).

    Article  ADS  Google Scholar 

  64. J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, Nano Lett. 4, 1181 (2004).

    Article  ADS  Google Scholar 

  65. J. H. Warner, A. Hoshino, K. Yamamoto, and R. D. Tilley, Angew. Chem. Int. Ed. 44, 4550 (2005).

    Article  Google Scholar 

  66. K. Kusova, O. Cibulka, K. Dohnalova, I. Pelant, J. Valenta, A. Fucikova, K. Zidek, J. Lang, J. Englich, P. Matejka, P. Stepanek, and S. Bakardjieva, ACS Nano 4, 4495 (2010).

    Article  Google Scholar 

  67. K. Dohnalova, S. Saeed, A. N. Poddubny, A. A. Prokofiev, and T. Gregorkiewicz, J. Solid State Sci. Technol. 2, R97 (2013), C. P. Umesh, J. M. Paulusse, H. Zuilhof, and T. Gregorkiewicz, Light: Sci. Appl. 2, e47 (2013).

    Article  Google Scholar 

  68. A. N. Poddubny and K. Dohnalová, Phys. Rev. B 90, 245439 (2014).

    Article  ADS  Google Scholar 

  69. A. S. Moskalenko, J. Berakdar, A. N. Poddubny, A. A. Prokofiev, I. N. Yassievich, and S. V. Goupalov, Phys. Rev. B 85, 085432 (2012).

    Article  ADS  Google Scholar 

  70. A. A. Prokofiev, A. N. Poddubny, and I. N. Yassievich, Phys. Rev. B 89, 125409 (2014).

    Article  ADS  Google Scholar 

  71. P. N. Keating, Phys. Rev. 145, 637 (1966).

    Article  ADS  Google Scholar 

  72. D. Vanderbilt, S. H. Taole, and S. Narasimhan, Phys. Rev. B 40, 5657 (1989).

    Article  ADS  Google Scholar 

  73. H. Rücker and M. Methfessel, Phys. Rev. B 52, 11059 (1995).

    Article  ADS  Google Scholar 

  74. A. Valentin, J. See, S. Galdin-Retailleau, and P. Dollfus, J. Phys.: Condens. Matter 20, 145213 (2008).

    ADS  Google Scholar 

  75. B. K. Ridley, J. Phys.: Condens. Matter 8, L511 (1996).

    ADS  Google Scholar 

  76. J. Khurgin, Y. J. Ding, and D. Jena, Appl. Phys. Lett. 91, 252104 (2007).

    Article  ADS  Google Scholar 

  77. V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  78. N. W. Ashcroft and D. N. Mermin, Solid State Physics (Thomson Learning, Toronto, 1976).

    MATH  Google Scholar 

  79. A. N. Poddubny, S. V. Goupalov, V. I. Kozub, and I. N. Yassievich, JETP Lett. 90, 683 (2010).

    Article  ADS  Google Scholar 

  80. K. Hess and P. Vogl, Solid State Commun. 30, 797 (1979).

    Article  ADS  Google Scholar 

  81. N. A. Zakhleniuk, C. R. Bennett, V. N. Stavrou, M. Babiker, and B. K. Ridley, Phys. Status Solidi A 176, 79 (1999).

    Article  ADS  Google Scholar 

  82. A. V. Gert and I. N. Yassievich, Semiconductors 49, 492 (2015).

    Article  ADS  Google Scholar 

  83. G. Allan and C. Delerue, Phys. Rev. B 77, 125340 (2008).

    Article  ADS  Google Scholar 

  84. M. C. Beard, A. G. Midgett, M. C. Hanna, J. M. Luther, B. K. Hughes, and A. J. Nozik, Nano Lett. 10, 3019 (2010).

    Article  ADS  Google Scholar 

  85. M. Govoni, I. Marri, and S. Ossicini, Nat. Photon. 6, 672 (2012).

    Article  ADS  Google Scholar 

  86. W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, Nat. Nanotechnol. 5, 878 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gert.

Additional information

Original Russian Text © A.V. Gert, M.O. Nestoklon, A.A. Prokofiev, I.N. Yassievich, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 10, pp. 1325–1340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gert, A.V., Nestoklon, M.O., Prokofiev, A.A. et al. Tight-binding simulation of silicon and germanium nanocrystals. Semiconductors 51, 1274–1289 (2017). https://doi.org/10.1134/S1063782617100098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617100098

Navigation