Skip to main content
Log in

Simulation of Electron and Hole States in Si Nanocrystals in a SiO2 Matrix: Choice of Parameters of the Empirical Tight-Binding Method

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The problem of the optimal choice of parameters of the empirical tight-binding method to simulate the quantum-confined levels of Si nanocrystals embedded into an amorphous SiO2 matrix is studied. To account for tunneling from nanocrystals to SiO2, the amorphous matrix is considered as a virtual crystal with a band structure similar to that of SiO2 β-cristobalite and with a lattice constant matched to the lattice constant of bulk Si. The electron density distributions in k space for electrons and holes quantum-confined in a Si nanocrystal in SiO2 are calculated in a wide energy region, which provides a means to see clearly the possibility of the existence of efficient direct optical transitions for hot electrons at the upper quantum-confined levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Pavesi, L. dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London, U.K.) 408, 440 (2000).

    Article  ADS  Google Scholar 

  2. O. Boyraz and B. Jalali, Opt. Express 12, 5269 (2004).

    Article  ADS  Google Scholar 

  3. F. Priolo, T. Gregorkiewicz, T. Galli, et al., Nat. Nanotechnol. 9, 19 (2014).

    Article  ADS  Google Scholar 

  4. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, Nat. Photon. 2, 105 (2008).

    Article  ADS  Google Scholar 

  5. E. de Jong, S. Saeed, W. Sinke, and T. Gregorkiewicz, Sol. Energy Mater. Sol. Cells 135, 67 (2015).

    Article  Google Scholar 

  6. S. Saeed, E. M. L. D. de Jong, K. Dohnalova, and T. Gregorkiewicz, Nat. Commun. 5, 4665 (2014).

    Article  ADS  Google Scholar 

  7. M. Schnabel, C. Weiss, P. Löper, P. R. Wilshaw, and S. Janz, Phys. Status Solidi A 212, 1649 (2015).

    Article  ADS  Google Scholar 

  8. J.-H. Park, L. Gu, G. vonMaltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).

    Article  ADS  Google Scholar 

  9. K. Seino, F. Bechstedt, and P. Kroll, Phys. Rev. B 82, 085320 (2010).

    Article  ADS  Google Scholar 

  10. I. Marri, M. Govoni, and S. Ossicini, Sol. Energy Mater. Sol. Cells 145, 162 (2016).

    Article  Google Scholar 

  11. J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).

    Article  ADS  Google Scholar 

  12. A. V. Gert, M. O. Nestoklon, A. A. Prokofiev, and I. N. Yassievich, Semiconductors 51, 1274 (2017).

    Article  ADS  Google Scholar 

  13. M. O. Nestoklon, A. N. Poddubny, P. Voisin, and K. Dohnalova, J. Phys. Chem. C 120, 18901 (2016).

    Article  Google Scholar 

  14. T. B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).

    Article  ADS  Google Scholar 

  15. Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Phys. Rev. B 79, 245201 (2009).

    Article  ADS  Google Scholar 

  16. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  17. Y. Xu and W. Y. Ching, Phys. Rev. B 44, 11048 (1991).

    Article  ADS  Google Scholar 

  18. M. Ribeiro, L. R. C. Fonseca, and L. G. Ferreira, Phys. Rev. B 79, 241312(R) (2009).

  19. C. Delerue, M. Lannoo, and G. Allan, Phys. Rev. Lett. 84, 2457 (2000).

    Article  ADS  Google Scholar 

  20. A. S. Moskalenko, J. Berakdar, A. A. Prokofiev, and I. N. Yassievich, Phys. Rev. B 76, 085427 (2007).

    Article  ADS  Google Scholar 

  21. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).

    Article  ADS  Google Scholar 

  22. S. Takeoka, M. Fujii, and S. Hayashi, Phys. Rev. B 62, 16820 (2000).

    Article  ADS  Google Scholar 

  23. W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, Nat. Nanotechnol. 5, 878 (2010).

    Article  ADS  Google Scholar 

  24. S. Furukawa and T. Miyasatoo, Phys. Rev. B 38, 5726 (1988).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported in part by the Russian Foundation for Basic Research, project nos. 16-02-00337 and 18-52-54002, and the Presidium of the Russian Academy of Sciences, program no. 31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belolipetskiy.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belolipetskiy, A.V., Nestoklon, M.O. & Yassievich, I.N. Simulation of Electron and Hole States in Si Nanocrystals in a SiO2 Matrix: Choice of Parameters of the Empirical Tight-Binding Method. Semiconductors 52, 1264–1268 (2018). https://doi.org/10.1134/S1063782618100020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618100020

Keywords

Navigation