Skip to main content
Log in

A theoretical study of light emission from nanoscale silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic properties of silicon nanostructures are calculated using a timedependent algorithm within the tight-binding approximation. The algorithm includes the electron-hole Coulomb interaction directly without resort to perturbative correction, allowing accurate calculation of excited state properties. The densities of states, fundamental band gaps, photoluminescence energies, and band edge eigenfunctions andk-distributions are calculated for nanostructures up to 100Å in diameter. The effects of size, geometry, surface termination, and surface reconstruction on the electronic properties are investigated. We show that a model in which the primary photoluminescence peak is due to exciton recombination across the fundamental gap, while the secondary infra-red peak is due to recombination of a conduction band electron with a hole in a deep surface trap is consistent with recent observations for both silicon nanocrystals and porous silicon. We infer the geometry of the luminescent region in porous silicon by comparing our calculated results with experimental data on porous silicon samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.T. Canham,Appl. Phys. Lett. 57, 1046 (1990).

    Article  CAS  Google Scholar 

  2. S. Schuppler, S.L. Friedman, M.A. Marcus, D.L. Aider, Y.-H. Xie, F.M. Ross, T.D. Harris, W.L. Brown, Y.J. Chabal, L.E. Brus and P.H. Citrin,Phys. Rev. Lett. 72, 2648 (1994).

    Article  CAS  Google Scholar 

  3. D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane and D. Brumhead,J. Lum. 57, 257 (1993).

    Article  CAS  Google Scholar 

  4. F. Koch, V. Petrova-Koch and T. Muschik,J. hum. 57, 271 (1993).

    CAS  Google Scholar 

  5. Other models based on molecular recombination in species such as polysilanes (S.M. Prokes, O.J. Glembocki, V.M. Bermudez, R. Kaplan, L.E. Friedersdorft and P.C. Searson,Phys. Rev. B 45,13788 [1992]) or siloxenes (M.S. Brandt, H.D. Fuchs, M. Stutzman, J. Weber and M. Cardona,Solid State Commun. 81, 307 [1992]) are not widely accepted.

    Article  CAS  Google Scholar 

  6. E. Martin, C. Delerue, G. Allan and M. Lannoo,Phys. Rev. 50, 18258 (1994).

    Google Scholar 

  7. N.A. Hill and KB. Whaley,J. Chem. Phys. 99, 3707 (1993).

    Article  CAS  Google Scholar 

  8. N.A. Hill and KB. Whaley,J. Chem. Phys. 100,2831 (1994).

    Article  CAS  Google Scholar 

  9. N.A. Hill and KB. Whaley, submitted.

  10. P. Vogl, H.P. Hjalmarson and J.D. Dow,J. Phys. Chem. Solids 44, 365(1983).

    Article  CAS  Google Scholar 

  11. J.R. Chelikowsky and M.L. Cohen,Phys. Rev. 14,556 (1976).

    Article  CAS  Google Scholar 

  12. H. Basch, A. Viste and H.B. Gray,Theoret. Chim. Acta 3,458 (1965).

    Article  CAS  Google Scholar 

  13. M. Wolfsberg and L. Helmholtz,J. Chem. Phys. 20, 837 (1952).

    Article  CAS  Google Scholar 

  14. Gaussian Inc., 4415 Fifth Avenue, Pittsburgh, PA 15213.

  15. J.C. Slater,Phys. Rev. B 36, 57 (1930).

    Article  CAS  Google Scholar 

  16. K. Schulten, I. Ohmine and M. Karplus,J. Chem. Phys. 64, 4422 (1976).

    Article  CAS  Google Scholar 

  17. K. Ohno,Theoret. Chim. Acta 2, 219 (1964).

    Article  CAS  Google Scholar 

  18. Z.H. Levine and S.G. Louie,Phys. Rev. B 25, 6310 (1982).

    Article  CAS  Google Scholar 

  19. L.W. Wang and A. Zunger,Phys. Rev. Lett. 73, 1039 (1994).

    Article  CAS  Google Scholar 

  20. L.E. Brus,J. Chem. Phys. 80, 4403 (1984).

    Article  CAS  Google Scholar 

  21. N.A. Hill and KB. Whaley,Phys. Rev. Lett. 75, 1130 (1995).

    Article  CAS  Google Scholar 

  22. S. Schuppler et al.,Phys. Rev. B 52, 4910 (1995).

    Google Scholar 

  23. V. Petrova-Koch, private communication.

  24. L.E. Brus, P.F. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler and P.H. Citrin,J. Am. Chem. Soc. 117, 2915 (1995).

    Article  CAS  Google Scholar 

  25. T. Suemoto, K Tanaka and A. Nakajima,J. Phys. Soc. Jpn. 63 B, 190 (1994).

    Google Scholar 

  26. M.V. Rama Krishna and R.A. Friesner,J. Chem. Phys. 96, 873 (1992).

    Article  CAS  Google Scholar 

  27. L.W. Wang and A. Zunger,J. Phys. Chem. 98, 2158 (1994).

    Article  CAS  Google Scholar 

  28. T. Uda and M. Hirao,J. Phys. Soc. Jpn. 63 Suppl. B, 97 (1994).

    Google Scholar 

  29. S.Y. Ren and J.D. Dow,Phys. Rev. B 45, 6492 (1992).

    Article  CAS  Google Scholar 

  30. C. Delerue, G. Allan and M. Lannoo,Phys. Rev. B 48, 11024 (1993).

    Article  CAS  Google Scholar 

  31. T. Kakagahara and K. Takeda,Phys. Rev. B46,15578(1992).

    Google Scholar 

  32. M.S. Hybertsen,Phys. Rev. Lett. 72, 1514 (1994).

    Article  CAS  Google Scholar 

  33. Z. Jing and J.L. Whitten,Phys. Rev. B 46, 9544 (1992).

    Article  CAS  Google Scholar 

  34. E. Kaxiras and J.D. Joannopoulos,Phys. Rev. B 37, 8842 (1988).

    Article  CAS  Google Scholar 

  35. J.C. Slater and G.F. Koster,Phys. Rev. 94, 1498 (1954).

    Article  CAS  Google Scholar 

  36. The same effect was observed for CdSe nanocrystals. 8

  37. J.R. Heath and P.E. Batson, private communication.

  38. V. Lehman and U. Gösele,Appl. Phys. Lett. 58, 856 (1991).

    Article  Google Scholar 

  39. W. Lang, P. Steiner and F. Kozlowski,J. Lum. 57,341 (1993).

    Article  CAS  Google Scholar 

  40. A mixture of wires and crystallites has been postulated in order to bring PP lifetime calculations into agreement with experiment (C.-Y. Yeh, S.B. Zhang, and A. Zunger,Appl. Phys. Lett. 63, 3455 [1993]).

    Article  CAS  Google Scholar 

  41. V. Petrova-Koch, T. Muschik, G. Polisski and D. Kovalev,MRS Symposium Proc. 358 (Pittsburgh, PA: MRS, 1995), p. 483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, N.A., Whaley, K.B. A theoretical study of light emission from nanoscale silicon. J. Electron. Mater. 25, 269–285 (1996). https://doi.org/10.1007/BF02666256

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666256

Key words

Navigation