Skip to main content
Log in

Effect of thermal annealing on the photoluminescence of structures with InGaAs/GaAs quantum wells and a low-temperature GaAs layer δ-doped with Mn

  • XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effects of isochronal thermal annealing (at 325–725°C) on the radiative properties of InGaAs/GaAs nanoheterostructures containing a low-temperature GaAs layer δ-doped with Mn grown by laser deposition are studied. A decrease in the photoluminescence intensity and increase in the ground transition energy are observed upon thermal impact for quantum wells located near the low-temperature GaAs layer. The distribution of Mn atoms in the initial and annealed structures is obtained by secondary-ion mass spectrometry. A qualitative model of the observed effects of thermal annealing on the radiative properties of the structures is discussed; this model takes into account two main processes: diffusion of point defects (primarily gallium vacancies) from the GaAs coating layer deep into the structure and Mn diffusion in both directions by the dissociation mechanism. Magnetization studies show that, as a result of thermal annealing, an increase in the proportion of the ferromagnetic phase at room temperature (presumably, MnAs clusters) in the low-temperature GaAs coating layer takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Zaitsev, V. D. Kulakovskii, M. V. Dorokhin, Yu. A. Danilov, P. B. Demina, M. V. Sapozhnikov, O. V. Vikhrova, and B. N. Zvonkov, Physica E 41, 652 (2009).

    Article  ADS  Google Scholar 

  2. B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, P. B. Demina, M. V. Dorokhin, V. V. Podol’skii, E. S. Demidov, Yu. N. Drozdov, and M. V. Sapozhnikov, J. Opt. Technol. 75, 389 (2008).

    Article  Google Scholar 

  3. I. A. Karpovich, A. V. Anshon, N. V. Baidus, L. M. Batukova, Yu. A. Danilov, B. N. Zvonkov, and S. M. Plankina, Semiconductors 28, 63 (1994).

    ADS  Google Scholar 

  4. I. A. Karpovich, A. V. Anshon, and D. O. Filatov, Semiconductors 32, 975 (1998).

    Article  ADS  Google Scholar 

  5. R. T. Blunt, in Proceedings of the CS MANTECH Conference, Vancouver, British Columbia, Canada, 24–27 April, 2006, p. 59.

    Google Scholar 

  6. P. J. Flanders, J. Appl. Phys. 63, 3940 (1988).

    Article  ADS  Google Scholar 

  7. A. M. Nazmul, S. Sugahara, and M. Tanaka, J. Cryst. Growth 251, 303 (2003).

    Article  ADS  Google Scholar 

  8. M. D. Vilisova, A. E. Kunitsyn, L. G. Lavrent’eva, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, S. E. Toropov, and V. V. Chaldyshev, Semiconductors 36, 953 (2002).

    Article  ADS  Google Scholar 

  9. A. P. Gorshkov, I. A. Karpovich, E. D. Pavlova, and I. L. Kalentyeva, Semiconductors 46, 184 (2012).

    Article  ADS  Google Scholar 

  10. F. M. Vorobkalo, K. D. Glinchuk, and A. V. Prokhorovich, Semiconductors 31, 893 (1997).

    Article  ADS  Google Scholar 

  11. I. A. Bobrovnikova, M. D. Vilisova, I. V. Ivonin, L.G. Lavrent’eva, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, S. V. Subach, and S. E. Toropov, Semiconductors 37, 1047 (2003).

    Article  ADS  Google Scholar 

  12. L. Fu, H. H. Tan, M. B. Johnston, M. Gal, and C. Jagadish, J. Appl. Phys. 85, 6786 (1999).

    Article  ADS  Google Scholar 

  13. O. Hulko, D. A. Thompson, and J. G. Simmons, Semicond. Sci. Technol. 24, 045015 (2009).

    Article  ADS  Google Scholar 

  14. Yu. A. Danilov, M. N. Drozdov, Yu. N. Drozdov, A. V. Kudrin, O. V. Vikhrova, B. N. Zvonkov, I. L. Kalentieva, and V. S. Dunaev, J. Spintron. Magn. Nanomater. 1, 82 (2012).

    Article  Google Scholar 

  15. L. M. C. Pereira, U. Wahl, S. Decoster, J. G. Correia, M. R. da Silva, A. Vantomme, and J. P. Araújo, Appl. Phys. Lett. 98, 201905 (2011).

    Article  ADS  Google Scholar 

  16. R. Schulz, T. Korn, D. Stich, U. Wurstbauer, D. Schuh, W. Wegscheider, and C. Schuller, Physica E 40, 2163 (2008).

    Article  ADS  Google Scholar 

  17. B. I. Boltaks, Diffusion and Point Defects in Semiconductors (Nauka, Leningrad, 1972), p. 383 [in Russian].

    Google Scholar 

  18. D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).

    Article  ADS  Google Scholar 

  19. S. S. Khludkov and O. B. Koretskaya, Izv. Vyssh. Uchebn. Zaved., Fiz. 28, 107 (1985).

    Google Scholar 

  20. J. S. Tsang, C. P. Lee, S. H. Lee, K. L. Tsai, and H. R. Chen, J. Appl. Phys. 77, 4302 (1995).

    Article  ADS  Google Scholar 

  21. K. W. Edmonds, P. Boguslawski, K. Y. Wang, R.P. Campion, S N. Novikov, N. R. S. Farley, B. L. Gallagher, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J. Bernholc, Phys. Rev. Lett. 92, 037201 (2004).

    Article  ADS  Google Scholar 

  22. F. Tuomisto, K. Pennanen, K. Saarinen, and J. Sadowski, Phys. Rev. Lett. 93, 055505 (2004).

    Article  ADS  Google Scholar 

  23. F. Matsukura, H. Ohno, and T. Dietl, Handbook of Magnetic Materials (Elsevier, Amsterdam, 2002), Vol. 14, p. 1.

    Google Scholar 

  24. K. Lawniczak-Jablonska, J. Libera, A. Wolska, M. T. Klepka, P. Dluzewski, J. Bak-Misiuk, E. Dynowska, P. Romanowski, J. Z. Domagala, J. Sadowski, A. Barcz, D. Wasik, A. Twardowski, and A. Kwiatkowski, Phys. Status Solidi B 248, 1609 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vikhrova.

Additional information

Original Russian Text © I.L. Kalentyeva, O.V. Vikhrova, Yu.A. Danilov, B.N. Zvonkov, A.V. Kudrin, M.N. Drozdov, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 11, pp. 1490–1496.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalentyeva, I.L., Vikhrova, O.V., Danilov, Y.A. et al. Effect of thermal annealing on the photoluminescence of structures with InGaAs/GaAs quantum wells and a low-temperature GaAs layer δ-doped with Mn. Semiconductors 50, 1469–1474 (2016). https://doi.org/10.1134/S1063782616110129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616110129

Navigation