Skip to main content
Log in

On the diffusion growth mechanism of semiconductor nanowires with the participation of hot atoms

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A kinetic model of semiconductor nanowire growth by gas phase adsorption is developed taking into account, along with the surface equilibrium diffusion of adatoms, the nonequilibrium diffusion of excited (hot) atoms generated by acts of adsorption and their relaxation as a result of excitation-energy accommodation via an electron channel at catalyst droplets. The processes that occur on the surface are simulated using the stochastic Monte Carlo method. It is shown that hot-adatom relaxation can determine the nanowire growth rate. The conditions for nanowire growth by the equilibrium or nonequilibrium diffusion of adatoms are established. It is demonstrated that the nanowire growth rate depends on the diameter of the nanodroplets, the distance between them, and the mean free path of atoms excited by the act of adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors 43, 1539 (2009).

    Article  ADS  Google Scholar 

  2. Y. Cui and C. M. Lieber, Science 291, 851 (2001).

    Article  ADS  Google Scholar 

  3. C. Lieber, Nature 414, 142 (2001).

    Article  Google Scholar 

  4. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004).

    Article  ADS  Google Scholar 

  5. O. Landre, C. Bourgeol, H. Renevier, and B. Daudin, Nanotechnology 20, 415602 (2009).

    Article  ADS  Google Scholar 

  6. I. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, Nature Mater. 1, 106 (2002).

    Article  ADS  Google Scholar 

  7. N. V. Sibirev, M. Tchernycheva, G. E. Cirlin, G. Patriarche, J. C. Harmand, and V. G. Dubrovskii, Semiconductors 46, 838 (2012).

    Article  ADS  Google Scholar 

  8. V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B 71, 205325 (2005).

    Article  ADS  Google Scholar 

  9. E. I. Givargizov, Growth of Fibrous and Plate Crystals from Vapour (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  10. I. P. Soshnikov, G. E. Cirlin, V. G. Dubrovskii, A. V. Veretekha, A. G. Gladyshev, and V. M. Ustinov, Phys. Solid State 48, 786 (2006).

    Article  ADS  Google Scholar 

  11. I. P. Soshnikov, Tech. Phys. Lett. 31, 644 (2005).

    Article  ADS  Google Scholar 

  12. I. P. Soshnikov, V. G. Dubrovskii, N. V. Sibirev, V. T. Barchenko, A. V. Veretekha, G. E. Tsyrlin, and V. M. Ustinov, Tech. Phys. Lett. 32, 520 (2006).

    Article  ADS  Google Scholar 

  13. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 31 (2006).

    Article  ADS  Google Scholar 

  14. V. G. Dubrovskii, N. V. Sibirev, and M. A. Timofeeva, Semiconductors 43, 1226 (2009).

    Article  ADS  Google Scholar 

  15. T. Zambelli, J. V. Barch, J. Wintterlin, and G. Erlt, Nature 390, 495 (1997).

    Article  ADS  Google Scholar 

  16. J. Harris and B. Kasemo, Surf. Sci. 105, L281 (1981).

    ADS  Google Scholar 

  17. I. Langmuir, Trans. Faraday Soc. 17, 621 (1922).

    Article  Google Scholar 

  18. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  19. V. P. Zhdanov, Elementary Physico-Chemical Process on Solid Surface (Springer, New York, 2007).

    Google Scholar 

  20. H. H. Semenov and B. B. Voevodskii, Heterogeneous Catalysis in Chemical Industry, Proceedings of All-Union Conference of the Year 1953 (Goskhimizdat, Moscow, 1955).

    Google Scholar 

  21. V. V. Styrov and Yu. I. Tyurin, Nonequilibrium Chemoeffects on Solid Surface (Energoatomizdat, Moscow, 2003) [in Russian].

    Google Scholar 

  22. V. P. Grankin, Tech. Phys. Lett. 20, 574 (1994).

    ADS  Google Scholar 

  23. V. P. Grankin, Kinet. Catal. 37, 802 (1996).

    Google Scholar 

  24. V. P. Grankin, V. Yu. Shalamov, and N. K. Uzunoglu, Chem. Phys. Lett. 328, 10 (2000).

    Article  ADS  Google Scholar 

  25. Yu. I. Tyurin, Poverkhnost’, No. 9, 115 (1986).

    Google Scholar 

  26. H. Nienhans, Surf. Sci. Rep. 45, 1 (2002).

    Article  ADS  Google Scholar 

  27. S. Koshiba, V. Nakamura, M. Tsuchiva, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, J. Appl. Phys. 76, 4138 (1994).

    Article  ADS  Google Scholar 

  28. J. C. Harmand, G. Patriarche, N. Pere-Laperne, M.-N. Merat-Combes, L. Travers, and F. Glas, Appl. Phys. Lett. 87, 203101 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Grankin.

Additional information

Original Russian Text © M.V. Grankin, A.I. Bazhyn, D.V. Grankin, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 6, pp. 845–851.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grankin, M.V., Bazhyn, A.I. & Grankin, D.V. On the diffusion growth mechanism of semiconductor nanowires with the participation of hot atoms. Semiconductors 48, 821–827 (2014). https://doi.org/10.1134/S1063782614060116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614060116

Keywords

Navigation