Skip to main content
Log in

Growth Kinetics of Planar Nanowires

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

An approximate analytic equation is derived that describes the law of elongation of a semiconductor nanowire (NW) growing via the vapor–liquid–solid (VLS) mechanism in a substrate plane. Various growth regimes are theoretically analyzed as dependent on NW radius R and epitaxial deposition conditions. It is established that the growth rate of planar NWs can be controlled either by the Gibbs–Thomson effect (in the case of small catalyst droplet dimensions) or by the diffusion of adatoms from the substrate surface (for increasing radius of the crystal). Dependence of the diffusion-controlled growth rate on radius R obeys the Rm law, where the power exponent takes the values of 1, 3/2, or 2 depending on the character of surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Zhang, G. Zheng, and C. M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer Int., Switzerland, 2016).

    Google Scholar 

  2. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  3. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008).

    ADS  Google Scholar 

  4. P. Yang, P. R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010).

    ADS  Google Scholar 

  5. L. Yu, P.-J. Alet, G. Picardi, and P. Roca i Cabarrocas, Phys. Rev. Lett. 102, 125501 (2009).

    ADS  Google Scholar 

  6. S. A. Fortuna, J. Wen, I. S. Chun, and X. Li, Nano Lett. 8, 4421 (2008).

    ADS  Google Scholar 

  7. M. Friedl, K. Cerveny, P. Weigele, G. Tütüncüoglu, S. Marti-Sanchez, C. Huang, T. Patlatiuk, H. Potts, Z. Sun, M. O. Hill, L. Güniat, W. Kim, M. Zamani, V. G. Dubrovskii, J. Arbiol, L. J. Lauhon, D. M. Zumbühl, and A. Fontcuberta i Morral, Nano Lett. 18, 2666 (2018).

    ADS  Google Scholar 

  8. D. Tsivion and E. Joselevich, J. Phys. Chem. C 118, 19158 (2014).

    Google Scholar 

  9. E. Oksenberg, R. Popovitz-Biro, K. Rechav, and E. Joselevich, Adv. Mater. 27, 3999 (2015).

    Google Scholar 

  10. G. Reut, E. Oksenberg, R. Popovitz-Biro, K. Rechav, and E. Joselevich, J. Phys. Chem. C 120, 17087 (2016).

    Google Scholar 

  11. A. Rothman, V. G. Dubrovskii, and E. Joselevich, Proc. Natl. Acad. Sci. U. S. A. 117, 152 (2020).

    Google Scholar 

  12. B. Nikoobakht, C. A. Michaels, S. J. Stranick, and M. D. Vaudin, Appl. Phys. Lett. 85, 3244 (2004).

    ADS  Google Scholar 

  13. Y. Shen, R. Chen, X. Yu, Q. Wang, K. L. Jungjohann, S. A. Dayeh, and T. Wu, Nano Lett. 16, 4158 (2006).

    ADS  Google Scholar 

  14. Y. Zi, K. Jung, D. Zakharov, and C. Yang, Nano Lett. 13, 2786 (2013).

    ADS  Google Scholar 

  15. V. G. Dubrovskii, N. V. Sibirev, and G. E. Cirlin, Tech. Phys. Lett. 30, 682 (2004).

    ADS  Google Scholar 

  16. W. Seifert, M. Borgstrom, K. Deppert, K. A. Dick, J. Johansson, M. W. Larsson, T. Martensson, N. Skold, C. P. T. Svensson, B. A. Wacaser, L. R. Wallenberg, and L. Samuelson, J. Cryst. Growth 272, 211 (2004).

    ADS  Google Scholar 

  17. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 31 (2006).

    ADS  Google Scholar 

  18. L. E. Fröberg, W. Seifert, and J. Johansson, Phys. Rev. B 76, 153401 (2007).

    ADS  Google Scholar 

  19. V. G. Dubrovskii and J. Grecenkov, Cryst. Growth Des. 15, 340 (2015).

    Google Scholar 

  20. V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992).

    ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, projects nos. 20-52-16301, 20-02-00351, 19-52-53031, and 18-02-40006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G., Shtrom, I.V. Growth Kinetics of Planar Nanowires. Tech. Phys. Lett. 46, 1008–1011 (2020). https://doi.org/10.1134/S1063785020100223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020100223

Keywords:

Navigation