Skip to main content
Log in

Specific Features of the Formation of Adsorption Layers from Products of Mechanochemical Modification of Humic Acids at a Liquid–Gas Interface

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Ethoxy- and aminoderivatives of natural polymers, humic acids, have been obtained via mechanochemical synthesis in a vibrational apparatus. The structure and physicochemical properties of their macromolecules have been studied by IR and UV spectroscopies. The average molecular mass of the products has been determined. The pendant drop shape and oscillating pendant drop methods have been employed to study the tensiometric and dilatational rheological characteristics of the surface layers formed at the interfaces between air and solutions of the modified derivatives of humic acids. It has been found that the formation of the adsorption layers of humic acid salts agrees with the protein adsorption model, which takes into account the possible existence of n states of macromolecules and their ability to aggregation in the surface layers when using the relations of the model in a semiempirical form. It has been shown that the viscoelasticity moduli of the surface layers of the ethoxylated derivatives of humic acids are increased relative to that of their unmodified form. Aminoderivatives of humic acids exhibit a higher stability in an acidic medium due to the presence of amino groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, Formation), Ermakov, E.I., Ed., St. Petersburg: SPb. Gos. Univ., 2004.

  2. Orlov, D.S., Sorosovskii Obrazovat. Zh., 1997, no. 2, p. 56.

  3. Piccolo, A., Soil Sci., 2001, vol. 166, p. 810.

    Article  CAS  Google Scholar 

  4. Mal’tseva, E.V., Shekhovtsova, N.S., Shilyaeva, L.P., and Yudina, N.V., Zh. Fiz. Khim., 2017, vol. 91, p. 1174.

    Google Scholar 

  5. Urazova, T.S., Bychkov, A.L., and Lomovskii, O.I., Russ. J. Appl. Chem., 2014, vol. 87, p. 651.

    Article  CAS  Google Scholar 

  6. Skripkina, T.S., Bychkov, A.L., Tikhova, V.D., Smolyakov, B.S., and Lomovsky, O.I., Environ. Technol. Innov., 2018, vol. 11, p. 74.

    Article  Google Scholar 

  7. Khil’ko, S.L., Kovtun, A.I., and Fainerman, V.B., Colloid J., 2010, vol. 72, p. 857.

    Article  CAS  Google Scholar 

  8. Khil’ko, S.L., Kovtun, A.I., and Fainerman, V.B., Colloid J., 2011, vol. 73, p. 110.

    Article  CAS  Google Scholar 

  9. Berkovich, A.M., http://www.humipharm.ru/research/prim.pdf. 2007. 29 c.

  10. Cook, R.L. and Langford, C.H., Understanding Humic Substances. Advanced Methods, Properties and Applications, Cambridge: R. Soc. Chem., 1999.

    Google Scholar 

  11. Perminova, I.V., Doctoral (Chem.) Dissertation, Moscow: Moscow State Univ., 2000.

  12. Ovchinnikov, Yu.A., Bioorganicheskaya khimiya (Bioorganic Chemistry), Moscow: Prosveshchenie, 1987.

  13. Smirnova, I.G., Trifonova, Zh.P., and Katrukha, G.S., Vestn. MGU, Ser. 2:Khim., 2006, vol. 47, p. 149.

    CAS  Google Scholar 

  14. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Fundamentals of Mechanical Activation, Mechanosynthesis, and Mechanochemical Technologies), Avakumov, E.G., Ed., Novosibirsk: Sib. Otd. RAN, 2009.

    Google Scholar 

  15. Baláž, P., Chem. Soc. Rev., 2013, vol. 42, p. 7571.

    Article  PubMed  CAS  Google Scholar 

  16. Boldyrev, V.V., Usp. Khim., 2006, vol. 75, p. 203.

    Article  CAS  Google Scholar 

  17. James, S.L. and Friscic, T., Chem. Commun., 2013, vol. 49, p. 5349.

    Article  CAS  Google Scholar 

  18. Khrustalev, Yu.A., Khrenkova, T.M., and Lebedev, V.V., Dokl. Akad. Nauk SSSR, 1981, vol. 257, p. 418.

    CAS  Google Scholar 

  19. Khrustalev, Yu.A., Khrenkova, T.M., Lebedev, V.V., and Toporov, Yu.P., Khim. Tverd. Topl., 1983, no. 4, p. 64.

  20. Khrenkova, T.M., Mekhanokhimicheskaya aktivatsiya uglei (Mechanochemical Activation of Coals), Moscow: Nedra, 1993.

  21. Khrenkova, T.M. and Kirda, V.S., Khim. Tverd. Topl., 1994, no. 6, p. 36.

  22. Ivanov, A.A., Yudina, N.V., and Lomovskii, O.I., Izv. Tomsk.Politekh. Univ., 2006, vol. 309, no. 5, p. 73.

    Google Scholar 

  23. Lebedev, V.V. and Nikanorova, L.P., Khim. Tverd. Topl., 1985, no. 2, p. 35.

  24. Radtsig, V.A., Khim. Fiz., 2004, vol. 23, no. 10, p. 70.

    CAS  Google Scholar 

  25. Butyagin, P.Yu., Usp. Khim., 1971, vol. 40, p. 1935.

    Article  CAS  Google Scholar 

  26. Sivakova, L.G., Lesnikova, N.P., Kim, N.M., and Rotova, G.M., Khim. Tverd. Topl., 2011, no. 1, p. 3.

  27. Kawahigashi, M., Sumida, H., and Yamamoto, K., J. Colloid Interface Sci., 2005, vol. 284, p. 463.

    Article  CAS  PubMed  Google Scholar 

  28. Visser, S.A., Plant Soil, 1985, vol. 87, p. 209.

    Article  Google Scholar 

  29. Loglio, G., Pandolfini, P., Miller, R., Makievski, A.V., Ravera, F., and Liggieri, L., Studies in Interface Science, Mobius, D. and Miller, R., Eds., Amsterdam: Elsevier, 2001, vol. 11, p. 439.

    Google Scholar 

  30. Zholob, S.A., Makievski, A.V., Miller, R., and Fainerman, V.B., Adv. Colloid Interface Sci., 2007, vols. 134–135, p. 322.

  31. Ravera, F., Liggieri, L., and Loglio, G., Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Leiden: Brill, 2009, vol. 1, p. 137.

    Google Scholar 

  32. Zholob, S.A., Kovalchuk, V.I., Makievski, A.V., Kragel, J., Fainerman, V.B., and Miller, R., Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Leiden: Brill, 2009, vol. 1, p. 77.

    Google Scholar 

  33. Naidja, A., Huang, P.M., Anderson, D.W., and Kessel, C.V., Appl. Spectrosc., 2002, vol. 56, p. 318.

    Article  CAS  Google Scholar 

  34. Chen, J., Gu, B., LeBoeuf, E.J., Pan, H., and Dai, S., Chemosphere, 2002, vol. 48, p. 59.

    Article  CAS  PubMed  Google Scholar 

  35. Silva, R.R., Lucena, G.N., Freitas, G.A., and Matos, A.T., Commun. Sci., 2018, vol. 9, p. 264.

    Article  Google Scholar 

  36. Umbach, W. and Stein, W., J. Am. Oil Chem. Soc., 1971, vol. 48, p. 394.

    Article  CAS  Google Scholar 

  37. Sallaya, P., Farkas, L., Szlovák, Z., and Fogassy, G., J. Surfactants Deterg., 2002, vol. 5, p. 353.

    Article  Google Scholar 

  38. Baramboim, N.K., Mekhanokhimiya vysokomolekulyarnykh soedinenii (Polymer Mechanochemistry), Moscow: Khimiya, 1978.

  39. Oprea, C., Vasiliu-Oprea, C., and Dan, F., Macromolecular Mechanochemistry: Polymer Mechanochemistry, Cambridge: Cambridge Int. Sci., 2003.

    Google Scholar 

  40. Reznikov, V.A., Khimiya azotsoderzhashchikh organi-cheskikh soedinenii (Chemistry of Nitrogen-Containing Organic Compounds), Novosibirsk: Novosib. Gos. Univ., 2006.

  41. Lehninger, A., Principles of Biochemistry, New York: Worth, 1982.

    Google Scholar 

  42. Fainerman, V.B., Aksenenko, E.V., Makievski, A.V., Trukhin, D.V., Yeganehzad, S., Gochev, G., and Miller, R., Food Hydrocolloids, 2020, vol. 106, p. 1.

    Article  CAS  Google Scholar 

  43. Pranzas, P.K., Willumeit, R., Gehrke, R., Thieme, J., and Knöchel, A., Anal. Bioanal. Chem., 2003, vol. 376, p. 618.

    Article  CAS  PubMed  Google Scholar 

  44. Shang, C. and Rice, J.A., J. Colloid Interface Sci., 2007, vol. 305, p. 57.

    Article  CAS  PubMed  Google Scholar 

  45. Khil’ko, S.L., Rogatko, M.I., Makarova, R.A., and Semenova, R.G., Kolloidn. Zh., 2020, vol. 82, p. 119.

    Google Scholar 

  46. Programmy i primery raschetov (Programs and Calculation Examples) http://www.sinterface.com. E.V. Aksenenko, the developer of programs (Eugene_Aksenenko@ukr.net).

  47. Lucassen-Reynders, E.H., Fainerman, V.B., and Miller, R., J. Phys. Chem. B, 2004, vol. 108, p. 9173.

    Article  CAS  Google Scholar 

  48. Fainerman, V.B. and Miller, R., Colloid J., 2005, vol. 67, p. 393.

    Article  CAS  Google Scholar 

  49. Benjamins, J., Lyklema, J., and Lucassen-Reynders, E.H., Langmuir, 2006, vol. 22, p. 6181.

    Article  CAS  PubMed  Google Scholar 

  50. Noskov, B.A., Latnikova, A.V., Lin, S.-Y., Loglio, G., and Miller, R., J. Phys. Chem. C, 2007, vol. 111, p. 16 895.

    Article  CAS  Google Scholar 

  51. Maldonado-Valderrama, J., Miller, R., Fainerman, V.B., Wilde, P.J., and Morris, V.J., Langmuir, 2010, vol. 26, p. 15 901.

    Article  CAS  Google Scholar 

  52. Fainerman, V.B., Aksenenko, E.V., Kragel, J., and Miller, R., Langmuir, 2013, vol. 29, p. 6964.

    Article  CAS  PubMed  Google Scholar 

  53. Aksenenko, E.V., Kairaliyeva, T., Makievski, A.V., Fainerman, V.B., and Miller, R., Colloids Surf. A, 2018, vol. 547, p. 95.

    Article  CAS  Google Scholar 

  54. Fainerman, V.B., Lylyk, S.V., Aksenenko, E.V., Makievski, A.V., Petkov, J.T., Yorke, J., and Miller, R., Colloids Surf. A, 2009, vol. 334, p. 1.

    Article  CAS  Google Scholar 

  55. Fainerman, V.B., Mys, A.V., Aksenenko, E.V., Makievski, A.V., Petkov, J.T., Yorke, J., and Miller, R., Colloids Surf. A, 2009, vol. 334, p. 22.

    Article  CAS  Google Scholar 

  56. Girardet, J.M., Humbert, G., Creusot, N., Chardot, V., Campagna, S., Courthaudon, J.L., and Gaillard, J.L., J. Colloid Interface Sci., 2001, vol. 243, p. 515.

    Article  CAS  Google Scholar 

  57. Pezennec, S., Gauthier, F., Alonso, C., Graner, F., Croguennec, T., Brule, G., and Renault, A., Food Hydrocolloids, 2000, vol. 14, p. 463.

    Article  CAS  Google Scholar 

  58. Fainerman, V.B., Kovalchuk, V.I., Aksenenko, E.V., Zinkovych, I.I., Makievski, A.V., Nikolenko, M.V., and Miller, R., Langmuir, 2018, vol. 34, p. 6678.

    Article  CAS  PubMed  Google Scholar 

  59. Yates, L.M. and Wandruszka, R., Soil Sci. Soc. Am. J., 1999, vol. 63, p. 1645.

    Article  CAS  Google Scholar 

  60. Leyton, P., Lizama-Vergara, P.A., Campos-Vallette, M.M., Becker, M.I., Clavijo, E., Córdova-Reyes, I., Vera, M., and Jerez, C.A., J. Chil. Chem. Soc., 2005, vol. 50, p. 725.

    CAS  Google Scholar 

  61. Terashima, M., Fukushima, M., and Tanaka, S., Colloids Surf. A, 2004, vol. 247, p. 77.

    Article  CAS  Google Scholar 

  62. Prado, A.G.S., Pertusatti, J., and Nunes, A.R., J. Braz. Chem. Soc., 2011, vol. 22, p. 1478.

    Article  CAS  Google Scholar 

  63. Smejkalova, D. and Piccolo, A., Environ. Sci. Technol., 2008, vol. 42, p. 699.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Khil’ko.

Ethics declarations

The authors declare that they have no conflict of in-terest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khil’ko, S.L., Rogatko, M.I., Makarova, R.A. et al. Specific Features of the Formation of Adsorption Layers from Products of Mechanochemical Modification of Humic Acids at a Liquid–Gas Interface. Colloid J 82, 746–757 (2020). https://doi.org/10.1134/S1061933X2006006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2006006X

Navigation