Skip to main content
Log in

Characterisation of structure and aggregation processes of aquatic humic substances using small-angle scattering and X-ray microscopy

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract.

Aquatic humic substances (HS), an important part of the dissolved organic carbon in freshwater systems, are polyfunctional natural compounds with polydisperse structure showing strong aggregation/coagulation behaviour at high HS concentrations and in the presence of metal ions. In this study, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS) and X-ray microscopy (XRM) were applied to characterise the structure and aggregation processes of HS in solution. In SAXS and XRM the high brilliant synchrotron radiation was used as X-ray source. Applying small-angle scattering, information about the size distribution and shape of aquatic HS was obtained. Spherical HS units were found which were stable in a wide concentration range in a kind of "monomeric" state almost independent of pH and ionic strength. At higher concentrations they formed chain-like agglomerates or disordered HS structures. In studies on the coagulation behaviour of HS after addition of copper ions, a linear relationship between Cu2+ concentration and the formation of large disordered HS-Cu2+ agglomerates was obtained. By using X-ray microscopy, single "huge" particles were found in older solutions and in solutions with high HS concentrations. Over a threshold Cu2+ concentration of approx. 300 mg/L, the formation of an extensive HS-Cu2+ network structure was observed within a few minutes. The presented structures show the ability of the methods used to characterise processes between diluted phase and suspended matter, which play an important role particularly in the region of phase interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Hayes MHB, Mccarthy P, Malcolm RL, Swift RS (1989) (eds) Humic substances II: In search of structure. Wiley, Chichester

  2. Janoš P (2003) J Chromatogr A 983:1-18

    Article  PubMed  Google Scholar 

  3. Leenheer JA, Wershaw RL, Brown GK, Reddy MM (2003) Appl Geochem 18:471–482

    Article  CAS  Google Scholar 

  4. Jones MN, Bryan ND (1998) Adv Colloid Interface Sci 78:1-48

    CAS  Google Scholar 

  5. Kopinke FD, Georgi A, Mackenzie K (2000) Acta Hydrochim Hydrobiol 28:385–399

    Article  CAS  Google Scholar 

  6. Franco I, Catalano L, Contin M, De Nobili M (2001) 29:88–99

  7. Jansen S, Paciolla M, Ghabbour E, Davies G, Varnum JM (1996) Mater Sci Eng C 4:181–187

    Google Scholar 

  8. O'Loughlin E, Chin YP (2001) Water Res 35:333–338

    Google Scholar 

  9. Wershaw RL, Pinckney DJ (1973) J Res US Geol Surv 1:701–707

    CAS  Google Scholar 

  10. Weng L, Temminghoff EJM, van Riemsdijk WH (2002) Eur J Soil Sci 53:575–587

    Article  CAS  Google Scholar 

  11. Wershaw RL (1999) Soil Sci 164:803–813

    Article  CAS  Google Scholar 

  12. Österberg R, Mortensen K (1992) Eur Biophys J 21:163–167

    Google Scholar 

  13. Lu Y, Allen HE (2002) Water Res 36:5083–5101

    Google Scholar 

  14. Bryan SE, Tipping E, Hamilton-Taylor J (2002) Comp Biochem Physiol C 133:37–49

    Article  CAS  Google Scholar 

  15. Wershaw RL, McKnight DM, Pinckney DJ (1983) In: Schallinger KM (ed) Proceedings of the second international symposium on peat in agriculture and horticulture. Hebrew University, Jerusalem, 205

  16. Ryan DK, Weber JH (1982) Anal Chem 54:986–990

    CAS  Google Scholar 

  17. MacCarthy P, Mark Jr HB (1976) Soil Sci Soc Am J 40:267–276

    CAS  Google Scholar 

  18. Frimmel FH (2002) Refractory organic substances in the environment. Wiley-VCH, Weinheim

  19. Kumke MU, Specht CH, Brinkmann T, Frimmel FH (2001) Chemosphere 45:1023–1031

    Article  CAS  PubMed  Google Scholar 

  20. Artinger R, Buckau G, Kim JL, Geyer S (1999) Fresenius J Anal Chem 364:737–745

    Google Scholar 

  21. Peuravuori J, Pihlaja (1997) Anal Chim Acta 337:133–149

    CAS  Google Scholar 

  22. Aoustin E, Schäfer AI, Fane AG, Waite TD (2001) Separ Purif Technol 22–23:63–78

  23. Nifant'eva TI, Shkinev VM, Spivakov BY, Burba P (1999) Talanta 48:257–267

    Article  CAS  Google Scholar 

  24. Burba P, Aster B, Spivakov BY (1998) Talanta 45:977–988

    CAS  Google Scholar 

  25. Bryan ND, Jones MN, Birkett J, Livens FR (2001) Anal Chim Acta 437:281–289

    Article  CAS  Google Scholar 

  26. Bryan ND, Jones MN, Birkett J, Livens FR (2001) Anal Chim Acta 437:291–308

    Article  CAS  Google Scholar 

  27. Dunkel R, Rüttinger HH, Peisker K (1997) J Chromatogr A 777:355–362

    Article  CAS  Google Scholar 

  28. Wagoner DB, Christman RF (1998) Acta Hydrochim Hydrobiol 26:191–195

    Article  CAS  Google Scholar 

  29. von Wandruszka R, Schimpf M, Hill M, Engebretson R (1999) Org Geochem 30:229–235

    Article  Google Scholar 

  30. Kubicki JD, Apitz SE (1999) Org Geochem 30:911–927

    Article  CAS  Google Scholar 

  31. Wershaw RL (1986) J Contam Hydr 1:29–45

    CAS  Google Scholar 

  32. Wershaw RL, Pinckney DJ, Booker SE (1977) J Res US Geol Surv 5:565–569

    CAS  Google Scholar 

  33. Thurman EM, Wershaw RL, Malcom RL, Pinckney, DJ (1982) Org Geochem 4:27–35

    CAS  Google Scholar 

  34. Tombácz E, Rice JA, Ren SZ (1997) Models in Chemistry 134:877–888

    Google Scholar 

  35. Kawahigashi M, Fujitake N, Azuma J, Takahashi T, Kajiwara K, Urakawa H (1995) Soil Sci Plant Nutr 41:363–366

    CAS  Google Scholar 

  36. Rice JA, Tombacz E, Malekani K (1999) Geoderma 88:251–264

    Article  Google Scholar 

  37. Lindquist I (1970) Acta Chem Scand 24:3068–3069

    Google Scholar 

  38. Wershaw RL, Burcar PJ, Sutula CL, Wiginton BJ (1967) Science 157:1429–1431

    CAS  Google Scholar 

  39. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

  40. Stuhrmann HB (1987) Molecular biology. Methods of experimental physics 23 C 367–403

  41. Fairbanks MC, North AN, Newport RJ (1990) Neutron and X-ray scattering: complementary techniques. Institute of Physics, Bristol

  42. Österberg R, Mortensen K (1994) Radiat Environ Biophys 33:269–276

    PubMed  Google Scholar 

  43. Österberg R, Mortensen K, Ikai A (1995) Naturwissenschaften 82:137–139

    Article  Google Scholar 

  44. Österberg R, Mortensen K (1992) Eur Biophys J 21:163–167

    Google Scholar 

  45. Thieme J, Schmahl G, Rudolph D, Umbach E (1998) (eds) X-ray microscopy and spectromicroscopy. Springer, Heidelberg, Berlin, New York

  46. Guttmann P, Niemann B, Thieme J, Hambach D, Schneider G, Wiesemann U, Rudolph D, Schmahl G (2001) Nucl Instr Meth Phys Res A 467–468:849–852

  47. Rieger J, Thieme J, Schmidt C (2000) Langmuir 16:8300–8305

    Article  CAS  Google Scholar 

  48. Guttmann P, Schneider G, Thieme J, David C, Diehl M, Medenwaldt R, Niemann B, Rudolph D, Schmahl G (1992) SPIE—The International Society for Optical Engineering—Proceedings, San Diego 1741:53–61

  49. Preis T, Thieme J (1996) Langmuir 12:1105–1106

    Article  CAS  Google Scholar 

  50. Myneni SCB, Brown JT, Martinez GA, Meyer-Ilse W (1999) Science 286:1335–1337

    Article  CAS  PubMed  Google Scholar 

  51. Thieme J, Niemeyer J (1998) Prog Colloid Polym Sci 111:193

    CAS  Google Scholar 

  52. Rothe J, Denecke MA, Dardenne K (2000) J Colloid Interface Sci 231:91–97

    Article  CAS  PubMed  Google Scholar 

  53. Frimmel FH, Abbt-Braun (1999) Environ Int 25:191–207

    CAS  Google Scholar 

  54. Aiken GR, Thurman EM, Malcolm RL (1979) Anal Chem 51:1799–1803

    CAS  Google Scholar 

  55. Pranzas PK (1999) Dissertation, University of Hamburg, GKSS 99/E/36, GKSS Research Centre, Geesthacht

  56. Knöchel A, Pranzas K, Stuhrmann H, Willumeit R (1997) Physica B 234 236:292–293

    Google Scholar 

  57. Elsner G, Riekel C, Zachmann HG (1985) Adv Polym Sci 67:1-57

    CAS  Google Scholar 

  58. Zachmann HG, Gehrke R, Prieske W, Riekel C (1985) Polym Res Synchrotron Radiat Sources, Brookhaven Natl Lab BNL-51847:73

  59. Schmahl G, Rudoph D, Niemann B, Guttmann P, Thieme J, Schneider G (1996) Naturwissenschaften 83:61–70

    Article  CAS  PubMed  Google Scholar 

  60. Svergun DI, Semenyuk AV (1991) J Appl Cryst 24:537–540

    Article  Google Scholar 

  61. Svergun DI (1992) J Appl Cryst 25:495–503

    Article  Google Scholar 

  62. Feigin LA, Svergun DI (1987) Taylor GW (ed) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York

  63. Brunner-Popela J, Glatter O (1997) J Appl Cryst 30:431–442

    Article  CAS  Google Scholar 

  64. Weyerich B, Brunner-Popela J, Glatter O (1999) J Appl Cryst 32:197–209

    Article  CAS  Google Scholar 

  65. Aiken GR, Brown PA, Noyes TI, Pinckney DJ (1989) In: Averett RC, Leenheer JA, McKnight DM, Thorn KA (eds) Humic substances in the Suwannee river, Georgia: Interactions, properties, and proposed structures. US Geol Surv 167

  66. Stevenson IL, Schnitzer M (1982) Soil Sci 133:179–185

    CAS  Google Scholar 

  67. Klaus U, Pfeifer T, Spiteller M (2000) Environ Sci Technol 34:3514–3520

    Article  CAS  Google Scholar 

  68. Abbt-Braun G (1987) Dissertation. TU München

Download references

Acknowledgments.

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (German Research Foundation) in the framework of the special scientific program Refraktäre Organische Säuren in Gewässern (ROSIG) (refractory organic substances in waters), contract number Kn 166/11–1–4, and from the Verband der Chemischen Industrie e. V" of Germany. We thank G. Abbt-Braun for the supply of standard humic and fulvic acids and D. I. Svergun for his help with the computer program, Gnom, and the support in calculating the distance distribution shown in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Klaus Pranzas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pranzas, P.K., Willumeit, R., Gehrke, R. et al. Characterisation of structure and aggregation processes of aquatic humic substances using small-angle scattering and X-ray microscopy. Anal Bioanal Chem 376, 618–625 (2003). https://doi.org/10.1007/s00216-003-1970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1970-6

Keywords

Navigation