Skip to main content
Log in

Tensiometric and Rheological Characteristics of Fractions of Humic and Hymatomelanic Acids

  • Published:
Colloid Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Du Nouy ring detachment and pendant drop methods have been employed to study the tensiometric (dynamic and equilibrium surface tensions) and surface rheological (viscoelasticity modulus and phase angle) characteristics of aqueous solutions of fractions of humic and hymatomelanic acids at a solution–air interface. It has been found that the fraction of low-molecular-weight hymatomelanic acids has high surface activity, while its surface layers are characterized by high viscoelasticity and storage elastisity moduli. The experimental dependences of the equilibrium surface tension and viscoelasticity modulus on the concentration of hymatomelanic acid salt solutions are adequately described in terms of the model of real two-dimensional solutions for polymolecular adsorption of polyelectrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The programs were developed by E.V. Aksenenko (Eugene_Aksenenko@ukr.net).

REFERENCES

  1. Kukharenko, T.A., Okislennye v plastakh burye i kamennye ugli (Brown and Hard Coals Oxidized in Seams), Moscow: Nedra, 1972.

  2. Glebova, G.I., Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 1980.

  3. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, New York: Oxford Univ. Press, 1998.

    Google Scholar 

  4. Perminova, I.V. and Zhilin, D.M., in Zelenaya khimiya v Rossii (Green Chemistry in Russia), Lunin, V.V., Tundo, P., and Lokteva, E.S., Eds., Moscow: Mosk. Gos. Univ., 2004.

  5. Lunin, V.V., Lokteva, E.S., and Golubina, E.V., Khimiya v interesakh ustoichivogo razvitiya – zelenaya khimiya (Chemistry in Interests of Sustained Development: Green Chemistry), Moscow: Mosk. Gos. Univ., 2007.

  6. Obzor rynka guminovykh udobrenii v Rossii i mire (The Review of Humic Fertilizers Market in Russia and over the World), Moscow: OOO “IG “Infomain,” 2018.

  7. Terkhi, M.C., Taleb, F., Gossart, P., Semmoud, A., and Addou, A., J. Photochem. Photobiol. A, 2008, vol. 198, p. 205.

    Article  CAS  Google Scholar 

  8. Aquino, A.J.A., Tunega, D., Pašalić, H., Haberhauer, G., Gerzabek, M.H., and Lischka, H., Chem. Phys., 2008, vol. 349, p. 69.

    Article  CAS  Google Scholar 

  9. Lu, Y., Yan, M., and Korshin, G.V., Geochim. Cosmochim. Acta, 2017, vol. 213, p. 308.

    Article  CAS  Google Scholar 

  10. Baker, H. and Khalili, F., Anal. Chim. Acta, 2005, vol. 542, p. 240.

    Article  CAS  Google Scholar 

  11. Reiller, B.P., Moulin, V., Casanova, F., and Dautel, C., Radiochim. Acta, 2003, vol. 91, p. 513.

    Article  CAS  Google Scholar 

  12. Takahashi, Y. and Minai, Y., J. Nucl. Radiochem. Sci., 2004, vol. 5, p. 37.

    Article  CAS  Google Scholar 

  13. Giokas, D.L., Antelo, J., Paleologos, E.K., Arce, F., and Karayannis, M.I., J. Environ. Monit., 2002, vol. 4, p. 505.

    Article  CAS  PubMed  Google Scholar 

  14. Mishima, S. and Nakagawa, T., J. Membr. Sci., 2004, vol. 228, p. 1.

    Article  CAS  Google Scholar 

  15. Negre, M., Schulten, H.-R., Gennari, M., and Vindrola, D., J. Environ. Sci. Health B, 2001, vol. 36, p. 107.

    Article  CAS  PubMed  Google Scholar 

  16. Fukushima, M. and Tatsumi, K., Colloids Surf. A, 1999, vol. 155, p. 249.

    Article  CAS  Google Scholar 

  17. Struyk, Z. and Sposito, G., Geoderma, 2001, vol. 102, p. 329.

    Article  CAS  Google Scholar 

  18. Antilén, M., González, M.A., Pérez-Ponce, M., Gacitúa, M., Valle, M.A., Armijo, F., Río, R., and Ramírez, G., Int. J. Electrochem. Sci., 2011, vol. 6, p. 901.

    Google Scholar 

  19. Martínez, C.M., Celis, L.B., and Cervantes, F.J., Appl. Microbiol. Biotechnol., 2013, vol. 97, p. 9897.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang, L., Mao, X., Yu, J., and Gan, F., Anti Corros. Meth. M, 2008, vol. 55, p. 204.

    Article  CAS  Google Scholar 

  21. Kasatkina, M.V., Fedorov, S.E., Gorokhov, M.V., and Kuratorov, A.V., RF Patent No. 2 221 900 (2004).

  22. Yudina, N.V., Pisareva, S.I., Pynchenkov, V.I., and Loskutova, Yu.V., Khim. Rastit. Syr’ya, 1998, no. 4, p. 33.

  23. Khil’ko, S.L., Efimova, I.V., and Smirnova, O.V., Khim. Tverd. Topl., 2011, no. 6, p. 3.

  24. Efimova, I.V., Smirnova, O.V., and Khil’ko, S.L., Russ. J. Appl. Chem., 2012, vol. 85, p. 1351.

    Article  CAS  Google Scholar 

  25. Smirnova, O.V., Efimova, I.V., and Khil’ko, S.L., Russ. J. Appl. Chem., 2012, vol. 85, p. 252.

    Article  CAS  Google Scholar 

  26. Efimova, I.V., Khil’ko, S.L., Smirnova, O.V., Berezhnoi, V.S., and Rybachenko, V.I., Khim. Tverd. Topl., 2013, no. 4, p. 3.

  27. Fed’ko, I.V., Gostishcheva, M.V., and Ismatova, R.R., Khim. Rastit. Syr’ya, 2005, no. 1, p. 49.

  28. Pant, K., Singh, B., and Thakur, N., Int. J. Toxicol. Pharmacol. Res., 2012, vol. 4, no. 2, p. 17.

    Google Scholar 

  29. Akbas, A., Silan, C., Gulpinar, M.T., Sancak, E.B., Ozkanli, S.S., and Cakir, D.U., Inflammation, 2015, vol. 38, p. 2042.

    Article  CAS  PubMed  Google Scholar 

  30. Berkovich, A.M., http://stomfaq.ru/53851/index. htm-l.

  31. Khil’ko, S.L. and Semenova, R.G., Khim. Tverd. Topl., 2016, no. 6, p. 66.

  32. Aristilde, L. and Sposito, G., Environ. Toxicol. Chem., 2013, vol. 32, p. 1467.

    CAS  PubMed  Google Scholar 

  33. Sutton, R. and Sposito, G., Environ. Sci. Technol., 2005, vol. 39, p. 9009.

    Article  CAS  PubMed  Google Scholar 

  34. Baalousha, M., Motelica-Heino, M., Galaup, S., and Le Coustumer, P., Microsc. Res. Tech., 2005, vol. 66, p. 299.

    Article  CAS  PubMed  Google Scholar 

  35. Piccolo, A., Soil Sci., 2001, vol. 166, p. 810.

    Article  CAS  Google Scholar 

  36. Fedotov, G.N. and Shoba, S.A., Eurasian Soil Sci., 2015, vol. 48, p. 1292.

    Article  CAS  Google Scholar 

  37. Khil’ko, S.L., Kovtun, A.I., and Fainerman, V.B., Colloid J., 2011, vol. 73, p. 110.

    Article  CAS  Google Scholar 

  38. Dmitrieva, E., Efimova, E., Siundiukova, K., and Perelomov, L., Environ. Chem. Lett., 2015, vol. 13, p. 197.

    Article  CAS  Google Scholar 

  39. Rozanova, M.S., Mylnikova, O.I., Klein, O.I., Filippova, O.I., Kholodov, V.A., Listov, E.L., and Kulikova, N.A., Eurasian Soil Sci., 2018, vol. 51, p. 1111.

    Article  CAS  Google Scholar 

  40. Meng, F., Yuan, G., Wei, J., Bi, D., Ok, Y.S., and Wang, H., Chemosphere, 2017, vol. 181, p. 461.

    Article  CAS  PubMed  Google Scholar 

  41. Soleimani, M., Hajabbasi, M.A., Afyuni, M., Isfahan, S.A., Jensen, J.K., Holm, P.E., and Borggaard, O.K., J. Environ. Qual., 2010, vol. 39, p. 855.

    Article  CAS  PubMed  Google Scholar 

  42. Lishtvan, I.I. and Kosarevich, I.V., Torfyanaya Prom-st, 1984, no. 1, p. 22.

  43. Khil’ko, S.L. and Titov, E.V., Kolloidn. Zh., 1993, vol. 55, p. 117.

    Google Scholar 

  44. Khil’ko, S.L. and Titov, E.V., Russ. J. Appl. Chem., 2000, vol. 73, p. 1458.

    Google Scholar 

  45. Khil’ko, S.L. and Titov, E.V., Khim. Tverd. Topl., 2001, no. 1, p. 78.

  46. Lotov, V.A., Maslov, S.G., and Chukhareva, N.V., Tekh. Tekhnol. Silikatov, 2004, vol. 11, nos. 3–4, p. 26.

  47. Gunsolus, I.L., Mousavi, M.P.S., Hussein, K., Bühlmann, P., and Haynes, C.L., Environ. Sci. Technol., 2015, vol. 49, p. 8078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang, Z., Zhao, X., Zhao, T., Wang, H., Wang, P., Wu, F., and Giesy, J.P., Environ. Sci. Technol., 2016, vol. 50, p. 8640.

    Article  CAS  PubMed  Google Scholar 

  49. Kasymova, E.Dzh. and Li, S.P., Mezhdunar. Zh. Prikl. Fundam. Issled., 2017, no. 6(2), p. 219.

  50. Shishmina, L.V., Chukhareva, N.V., and Kravtsov, A.V., Koks Khim., 2002, no. 2, p. 7.

  51. Yudina, N.V and Tikhova, V.I., Khim. Rastit. Syr’ya, 2003, no. 1, p. 93.

  52. Popov, A.F., Lutsik, A.I., Titov, E.V., Suikov, S.Yu., and Khil’ko, S.L., RF Patent No. 5583, Byull. Izobret., No. 3 (2005).

  53. Miller, R., Makievski, A.V., and Fainerman, V.B., Stud. Interface Sci., 2001, vol. 13, p. 87.

    Google Scholar 

  54. Rusanov, A.I. and Prokhorov, V.A., Mezhfaznaya tenziometriya (Interfacial Tensiometry), St. Petersburg: Khimiya, 1994.

  55. Loglio, G., Pandolfini, P., Miller, R., Makievski, A.V., Ravera, F., Ferrari, M., Liggieri, L., Novel Methods to Study Interfacial Layers, Amsterdam: Elsevier, 2001.

    Google Scholar 

  56. Zholob, S.A., Makievski, A.V., Miller, R., and Fainerman, V.B., Adv. Colloid Interface Sci., 2007, vol. 322, p. 134.

    Google Scholar 

  57. Ravera, F., Liggieri, L., and Loglio, G., in Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Boca Raton: CRC, 2009, vol. 1, p. 137.

    Google Scholar 

  58. Zholob, S.A., Kovalchuk, V.I., Makievski, A.V., Kragel, J., Fainerman, V.B., and Miller, R., in Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Boca Raton: CRC, 2009, vol. 1, p. 77.

    Google Scholar 

  59. Cook, R.L. and Langford, C.H., in Understanding Humic Substances. Advanced Methods, Properties and Applications, Cihabbour, E.A. and Davies, G., Eds., Sawston: Woodhead, 1999, p. 31.

  60. Kleinhempel, D., Albrecht-Thaer-Arhiv, 1970, vol. 14, no. 1, p. 3.

    CAS  Google Scholar 

  61. Schnitzer, M. and Khan, S.U., Humic Substances in the Environment, New York: Marcel Dekker, 1972.

    Google Scholar 

  62. Orlov, D.S., Sorosovskii Obrazovat. Zh., 1997, no. 2, p. 56.

  63. Stevenson, F.J., Humus Chemistry. Genesis, Composition, Reactions, New York: Wiley, 1982.

    Google Scholar 

  64. Sein, L.T., Varnum, J.M., and Jansen, S.A., Environ. Sci. Technol., 1999, vol. 33, p. 546.

    Article  CAS  Google Scholar 

  65. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, Formation), Ermakov, E.I., Ed., St. Petersburg: S.-Peterb. Univ., 2004.

    Google Scholar 

  66. Orsi, M., Chem. Biol. Technol. Agriculture, 2014, vol. 1, p. 10.

    Article  CAS  Google Scholar 

  67. Fainerman, V.B. and Miller, R., Colloid J., 2005, vol. 67, p. 393.

    Article  CAS  Google Scholar 

  68. Fainerman, V.B., Lucassen-Reynders, E.H., and Miller, R., Adv. Colloid Interface Sci., 2003, vol. 106, p. 237.

    Article  CAS  PubMed  Google Scholar 

  69. Pranzas, P.K., Willumeit, R., Gehrke, R., Thieme, J., and Knöchel, A., Anal. Bioanal. Chem., 2003, vol. 376, p. 618.

    Article  CAS  PubMed  Google Scholar 

  70. Shang, Ch. and Rice, J.A., J. Colloid Interface Sci., 2007, vol. 305, p. 57.

    Article  CAS  PubMed  Google Scholar 

  71. Ryabova, I.N. and Mustafina, G.A., Akulova 3.G., Satymbaeva A.S, Colloid J., 2009, vol. 71, p. 729.

    Article  CAS  Google Scholar 

  72. Parfenova, L.N., Trufanova, M.V., Selyanina, S.B., Bogolitsyn, K.G., Orlov, A.S., and Strigutskii, V.P., Fundam. Issled., 2014, vol. 12, p. 1411.

    Google Scholar 

  73. www.sinterface.com.

  74. Sivakova, L.G., Lesnikova, N.P., Kim, N.M., and Rotova, G.M., Khim. Tverd. Topl., 2011, no. 1, p. 3.

  75. Kawahigashi, M., Sumida, H., and Yamamoto, K., J. Colloid Interface Sci., 2005, vol. 284, p. 463.

    Article  CAS  PubMed  Google Scholar 

  76. Visser, S.A., Plant Soil, 1985, vol. 87, p. 209.

    Article  Google Scholar 

  77. Lucassen-Reynders, E.H., Fainerman, V.B., and Miller, R., J. Phys. Chem. B, 2004, vol. 108, p. 9173.

    Article  CAS  Google Scholar 

  78. Ward, A.F.H. and Tordai, L., J. Chem. Phys., 1946, vol. 14, p. 543.

    Article  Google Scholar 

  79. Sherwood, T., Pigford, R., and Wilkie, C.R., Mass Transfer, New York: McGraw-Hill, 1975.

    Google Scholar 

  80. Cornel, P.K., Summers, R.S., and Roberts, P.V., J. Colloid Interface Sci., 1986, vol. 110, p. 149.

    Article  CAS  Google Scholar 

  81. Lead, J.R., Wilkinson, K.J., Starchev, K., Canonica, S., and Buffle, J., Environ. Sci. Technol., 2000, vol. 34, p. 1365.

    Article  CAS  Google Scholar 

  82. Otto, W.H., Britten, D.J., and Larive, C.K., J. Colloid Interface Sci., 2003, vol. 261, p. 508.

    Article  CAS  PubMed  Google Scholar 

  83. Miller, R., Fainerman, V.B., Aksenenko, E.V., Leser, M.E., and Michel, M., Langmuir, 2004, vol. 20, p. 771.

    Article  CAS  PubMed  Google Scholar 

  84. Khil’ko, S.L., Kotenko, A.A., Grebenyuk, S.A., Zarechnaya, O.M., and Mikhailov, V.A., Colloid J., 2019, vol. 81, p. 277.

    Article  Google Scholar 

  85. Fainerman, V.B., Usp. Khim., 1985, vol. 54, p. 1613.

    Article  Google Scholar 

  86. Fainerman, V.B., Zh. Fiz. Khim., 1990, vol. 64, p. 1611.

    CAS  Google Scholar 

  87. Wustneck, R., Fainerman, V.B., Aksenenko, E.V., Kotsmar, Cs., Pradines, V., and Miller, R., Colloids Surf. A, 2012, vol. 404, p. 17.

    Article  CAS  Google Scholar 

  88. Dan, A., Wustneck, R., Kragel, J., Aksenenko, E.V., Fainerman, V.B., and Miller, R., Food Hydrocolloids, 2014, vol. 34, p. 193.

    Article  CAS  Google Scholar 

  89. Miller, R., Aksenenko, E.V., Zinkovych, I.I., and Fainerman, V.B., Adv. Colloid Interface Sci., 2015, vol. 222, p. 509.

    Article  CAS  PubMed  Google Scholar 

  90. Pezennec, S., Gauthier, F., Alonso, C., Graner, F., Croguennec, T., Brule, G., and Renault, A., Food Hydrocolloids, 2000, vol. 14, p. 463.

    Article  CAS  Google Scholar 

  91. Noskov, B.A., Latnikova, A.V., Lin, S.-Y., Loglio, G., and Miller, R., J. Phys. Chem. C, 2007, vol. 111, p. 16 895.

    Article  CAS  Google Scholar 

  92. Babak, V.G. and Desbrieres, J., Colloid Polym. Sci., 2006, vol. 284, p. 745.

    Article  CAS  Google Scholar 

  93. Desbrieres, J. and Babak, V.G., Ross. Khim. Zh., 2008, vol. 52, no. 1, p. 75.

    CAS  Google Scholar 

  94. Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., and Ermolaev, A.M., Kriosfera Zemli, 2017, vol. 21, no. 2, p. 70.

    Google Scholar 

  95. Naidja, A., Huang, P.M., Anderson, D.W., and Kessel, C.V., Appl. Spectrosc., 2002, vol. 56, p. 318.

    Article  CAS  Google Scholar 

  96. Chen, J., Gu, B., LeBoeuf, E.J., Pan, H., and Dai, S., Chemosphere, 2002, vol. 48, p. 59.

    Article  CAS  PubMed  Google Scholar 

  97. Silva, R.R., Lucena, G.N., De Freitas, G.A., and Matos, A.T., J. Sci. Commun., 2018, vol. 9, p. 264.

    Google Scholar 

  98. Khil’ko, S.L., Kovtun, A.I., and Rybachenko, V.I., Khi-m. Tverd. Topl., 2011, no. 5, p. 50.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Khil’ko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khil’ko, S.L., Rogatko, M.I., Makarova, R.A. et al. Tensiometric and Rheological Characteristics of Fractions of Humic and Hymatomelanic Acids. Colloid J 81, 779–789 (2019). https://doi.org/10.1134/S1061933X2001007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2001007X

Navigation