Skip to main content
Log in

Zvezda—A New Subfamily of Tc1-Like Transposons in Asterozoa Genomes

  • MOLECULAR GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Mobile genetic elements have a significant impact on the evolution of the genomes of living organisms. They are divided into two classes—retrotransposons and DNA transposons. ITm transposons are one of the widespread groups of DNA transposons and are found in almost all organisms. In this work, we investigated the abundance, structure, and evolution of elements with the DD46E catalytic domain that is unusually long for ITm transposons. These elements were found only in the subtype Asterozoa. Their copy number, structure, and possible functionality of transposase, as well as phylogenetic relationships to other representatives of ITm transposons, were studied. It was shown that the group of transposons that we discovered, which we named Zvezda, is a subfamily of Tc1-like transposons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bourque, G., Burns, K.H., Gehring, M., et al., Ten things you should know about transposable elements, Genome Biol., 2018, vol. 19, p. 199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yurchenko, N.N., Kovalenko, L.V., and Zakharov, I.K., Transposable elements: instability of genes and genomes, Russ. J. Genet., Appl. Res., 2011, vol. 1, no. 2, pp. 489—496. https://doi.org/10.1134/S2079059711060141

    Article  Google Scholar 

  3. Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, pp. 345—354.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Auvinet, J., Graça, P., Belkadi, L., et al., Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus, BMC Genom., 2018, vol. 19, p. 339.

    Article  CAS  Google Scholar 

  5. Kojima, K.K., Structural and sequence diversity of eukaryotic transposable elements, Genes Genet. Syst., 2020, vol. 94, pp. 233—252. https://doi.org/10.1266/ggs.18-00024

    Article  CAS  PubMed  Google Scholar 

  6. Lee, C.C. and Wang, J., Rapid expansion of a highly germline-expressed Mariner element acquired by horizontal transfer in the fire ant genome, Genome Biol. Evol., 2018, vol. 10, pp. 3262—3278. https://doi.org/10.1093/gbe/evy220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie, L.-Q., Wang, P.-L., Jiang, S.-H., et al., Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome, Genes Genomics, 2018, vol. 40, pp. 485—495. https://doi.org/10.1007/s13258-018-0648-6

    Article  CAS  PubMed  Google Scholar 

  8. Shen, D., Gao, B., Miskey, C., et al., Multiple invasions of Visitor, a DD41D family of Tc1/mariner transposons, throughout the evolution of vertebrates, Genome Biol. Evol., 2020, vol. 12, pp. 1060—1073. https://doi.org/10.1093/gbe/evaa135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan, Y.W. and Wessler, S.R., The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 7884—7889. https://doi.org/10.1073/pnas.1104208108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, H.H., Shen, Y.H., Xiong, X.M., et al., Identification and evolutionary history of the DD41D transposons in insects, Genes Genom., 2016, vol. 38, pp. 109—117. https://doi.org/10.1007/s13258-015-0356-4

    Article  CAS  Google Scholar 

  11. Tellier, M., Claeys Bouuaert, C., and Chalmers, R., Mariner and the ITm superfamily of transposons, Microbiol. Spectrum, 2015, vol. 3. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

  12. Ivics, Z. and Izsvák, Z., Sleeping beauty transposition, Microbiol. Spectrum, 2015, vol. 3. https://doi.org/10.1128/microbiolspec.MDNA3-0042-2014

  13. Ivics, Z., Hackett, P.B., Plasterk, R.H., and Izsvák Z., Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells, Cell, 1997, vol. 91, pp. 501—510.

    Article  CAS  PubMed  Google Scholar 

  14. Plasterk, R.H., Izsvák, Z., and Ivics, Z., Resident aliens the Tc1/mariner superfamily of transposable elements, Trends Genet., 1999, vol. 15, pp. 527—538.

    Article  Google Scholar 

  15. Dupeyron, M., Baril, T., Bass, C., and Hayward, A., Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements, Mobile DNA, 2020, vol. 11, p. 21. https://doi.org/10.1186/s13100-020-00212-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao, B., Wang, Y., and Diaby, M., Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates, Mobile DNA, 2020, vol. 11, p. 25. https://doi.org/10.1186/s13100-020-00220-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shao, H. and Tu, Z., Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons, Genetics, 2001, vol. 159, pp. 1103—1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, S., Diaby, M., Puzakov, M., et al., Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes, Mol. Phylogenet. Evol., 2021, vol. 161, article 107143. https://doi.org/10.1016/j.ympev.2021.107143

    Article  PubMed  Google Scholar 

  19. Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., An analysis of IS630/Tc1/mariner transposons in the genome of a Pacific oyster, Crassostrea gigas, J. Mol. Evol., 2018, vol. 86, pp. 566—580. https://doi.org/10.1007/s00239-018-9868-2

    Article  CAS  PubMed  Google Scholar 

  20. Buchan, D.W.A. and Jones, D.T., The PSIPRED protein analysis workbench: 20 years on, Nucleic Acids Res., 2019, vol. 47, pp. 402—407. https://doi.org/10.1093/nar/gkz297

    Article  CAS  Google Scholar 

  21. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547—1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Filée, J., Rouault, J.D., Harry, M., and Hua-Van, A., Mariner transposons are sailing in the genome of the blood sucking bug Rhodnius prolixus, BMC Genomics, 2015, vol. 16, p. 1061. https://doi.org/10.1186/s12864-015-2060-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B., TimeTree: a resource for timelines, timetrees, and divergence times, Mol. Biol. Evol., 2017, vol. 34, pp. 1812—1819. https://doi.org/10.1093/molbev/msx116

    Article  CAS  PubMed  Google Scholar 

  24. Schaack, S., Gilbert, C., and Feschotte, C., Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution, Trends Ecol. Evol., 2010, vol. 25, pp. 537—546.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sundararajan, P., Atkinson, P.W., and O’Brochta, D.A., Transposable element interactions in insects: crossmobilization of hobo and Hermes, Insect Mol. Biol., 1999, vol. 8, no. 3, pp. 359—368.

    Article  CAS  PubMed  Google Scholar 

  26. Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., The Tc1-like elements with the spliceosomal introns in mollusk genomes, Mol. Genet. Genomics, 2020, vol. 295, pp. 621—633.

    Article  CAS  PubMed  Google Scholar 

  27. Zong, W., Gao, B., Diaby, M., et al., Traveler, a new DD35E family of Tc1/mariner transposons, invaded vertebrates very recently, Genome Biol. Evol., 2020, vol. 12, pp. 66—76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sang, Y., Gao, B., Diaby, M., et al., Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals, Mobile DNA, 2019, vol. 10, p. 45.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gao, B., Zong, W., Miskey, C., et al., Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals, Mobile DNA, 2020, vol. 11, p. 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, H.H., Li, G.Y., Xiong, X.M., et al., TRT, a vertebrate and protozoan Tc1-like transposon: current activity and horizontal transfer, Genome Biol. Evol., 2016, vol. 8, pp. 2994—3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emmons, S.W., Yesner, L., Ruan, K., and Katzenberg, D., Evidence for a transposon in Caenorhabditis elegans, Cell, 1983, vol. 32, pp. 55—65.

    Article  CAS  PubMed  Google Scholar 

  32. Franz, G. and Savakis, C., Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons, Nucleic Acids Res., 1991, vol. 19, p. 6646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langin, T., Capy, P., and Daboussi, M.J., The transposable element impala, a fungal member of the Tc1-mariner superfamily, Mol. Gen. Genet., 1995, vol. 246, pp. 19—28.

    Article  CAS  PubMed  Google Scholar 

  34. Clark, K.J., Carlson, D.F., Leaver, M.J., et al., Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells, Nucleic Acids Res., 2009, vol. 37, pp. 1239—1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study of MGE Zvezda was performed within the framework of the State Assignment of the Institute of Marine Biological Research “Functional, Metabolic, and Toxicological Aspects of the Existence of Aquatic Organisms and Their Populations in Biotopes with Different Physicochemical Regimes,” state registration no. 121041400077-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Puzakova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for animal care and use have been followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakova, L.V., Puzakov, M.V. Zvezda—A New Subfamily of Tc1-Like Transposons in Asterozoa Genomes. Russ J Genet 58, 132–142 (2022). https://doi.org/10.1134/S1022795422010094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422010094

Keywords:

Navigation