Skip to main content
Log in

Identification and evolutionary history of the DD41D transposons in insects

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The rosa monophyletic group of transposons is a group of transposable element with characteristics of encoding a DD41D motif in the catalytic domain. However, biology and evolutionary history of this monophyletic group are still poorly understood. In this study, we report the first description for the presence of a rosa transposon in the silkworm Bombyx mori. Further analyses confirmed that this element in the silkworm genome had recently amplified and might still be capable of transposition. In addition, we present evidence, based on searches of publicly available insect genomes, that a new clade of the rosa monophyletic group was identified. Interestingly, analysis of their three dimensional structures suggested that these proteins showed highly similar protein structures with that of the Mos1 transposase. These results provided useful insights into the functionality of these transposases and their structural and functional deviations from other transposases in the Tc1/mariner superfamily. Meanwhile, sequence and phylogenetic analysis confirmed that DD41D and maT elements might represent another independent large group of the Tc1/mariner superfamily. Importantly, the result of the comparison of terminal inverted repeats (TIRs) validated that DD41D and maT elements almost had identical consensus terminal sequences (5′-CAGGGTGNSNCA-3′), implying they might have similar cleavage sites or patterns during the process of their transposition. In a word, this study will enrich and expand our knowledge of the Tc1/mariner superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auge′-Gouillou C, Hamelin MH, Demattei MV, Periquet G, Bigot Y (2001) The ITR binding domain of the mariner Mos1 transposase. Mol Genet Genom 265:58–65

    Article  Google Scholar 

  • Brillet B, Bigot Y, Augé-Gouillou C (2007) Assembly of the Tc1 and mariner transposition initiationcomplexes depends on the origins of their transposase DNAbinding domains. Genetica 130:105–120

    Article  PubMed  Google Scholar 

  • Bryan G, Garza D, Hartl D (1990) Insertion and excision of the transposable element mariner in Drosophila. Genetics 125:103–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Capy P, Vitalis R, Langin T, Higuet D, Bazin C (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42:359–368

    Article  CAS  PubMed  Google Scholar 

  • Clark KJ, Carlson DF, Leaver MJ, Foster LK, Fahrenkrug SC (2009) Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res 37:1239–1247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claudianos C, Brownlie J, Russell R, Oakeshott J, Whyard S (2002) maT:a clade of transposons intermediate between mariner and Tc1. Mol Biol Evol 19:2101–2109

    Article  CAS  PubMed  Google Scholar 

  • Collins J, Forbes E, Anderson P (1989) The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics 121:47–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB (2002) Structure–function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J Mol Biol 318:1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Daboussi MJ, Langin T, Brygoo Y (1992) Fot1, a new family of fungal transposable elements. Mol Gen Genet 232:12–16

    Article  CAS  PubMed  Google Scholar 

  • Delauriere L, Chenais B, Hardivillier Y, Gauvry L, Casse N (2009) Mariner transposons as genetic tools in vertebrate cells. Genetica 137:9–17

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, Wu Y, Wang J, Mita K, Xiang Z, Xia Q (2010) SilkDB v20: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res 38:D453–D456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32:55–65

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19:6646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomulski LM, Torti C, Bonizzoni M, Moralli D, Raimondi E, Capy P, Gasperi G, d Malacrida AR (2001) A new basal subfamily of mariner elements in Ceratitis rosa and other tephritid flies. J Mol Evol 53:597–606

    Article  CAS  PubMed  Google Scholar 

  • Haymer DS, Marsh JL (1986) Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Dev Genetics 6:281–291

    Article  CAS  Google Scholar 

  • Izsvak Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-likeDNA-binding domain and a transpositional enhancer inSleeping Beauty transposition. J Biol Chem 277:34581–34588

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jee SH, Kim GE, Hong SH, Seo SB, Shim JK, Park SC, Choo JK (2007) Characterization of EamaT1, a member of maT family of transposable elements from the earthworm Eisenia andrei (Annelida, Oligochaeta). Mol Genet Genomics 278:479–486

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116:271–302

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  Google Scholar 

  • Kumaresan and Mathavan (2004) Molecular diversity and phylogenetic analysis of mariner-like transposons in the genome of the silkworm Bombyx mori. Insect Mol Biol 2004(13):259–271

    Article  Google Scholar 

  • Lampe DJ (2010) Bacterial genetic methods to explore the biology of mariner transposons. Genetica 138:499–508

    Article  CAS  PubMed  Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang G (2014) Tc1-like transposable elements in plant genomes. Mob DNA 5:17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohe A, Sullivan D, Hartl D (1996) Genetic evidence for subunit interactions in the transposase of the transposable element mariner. Genetics 144:1087–1095

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Lopez M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Evol 382:567–572

    CAS  Google Scholar 

  • Nicholas KB, Nicholas HB, d Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14

    Google Scholar 

  • Pietrokovski S, Henikoff S (1997) A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254:689–695

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD (2009) Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 138:1096–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson HM, Lampe DJ (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12:850–862

    CAS  PubMed  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Pouderoyen G, Ketting RF, Perrakis A, Plasterk RH (1997) Sixma TK (1997), Crystal structure of the specific DNA-binding domain of Tc3 transposase of C. elegans in complex with transposon DNA. EMBO J 160:6044–6054

    Article  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (31560308 to ZHH, 31260632 to ZXG and 31401106 to HMJ), the National Natural Science Foundation in Jiangxi Province of China (20122BAB204018 to ZXG) and Doctoral start-up funding of Jiujiang University (8879424 to ZHH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gu Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Hua-Hao Zhang and Yi-Hong Shen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The frequency distributions (ordinate) of sequence identities (abscissa) of rosa_Bm. The percentage identity is based on BLAST search, using the consensus as the query. The sequences shorter than 100 bp were excluded. The black line represents the tendency estimated by a simple moving average of the percentage identity scores. Supplementary material 1 (PDF 106 kb)

Supplementary material 2 (DOC 59 kb)

Supplementary material 3 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HH., Shen, YH., Xiong, XM. et al. Identification and evolutionary history of the DD41D transposons in insects. Genes Genom 38, 109–117 (2016). https://doi.org/10.1007/s13258-015-0356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0356-4

Keywords

Navigation