Skip to main content
Log in

Two-Sphere Partition Functions and Gromov–Witten Invariants

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Many \({\mathcal{N}=(2,2)}\) two-dimensional nonlinear sigma models with Calabi–Yau target spaces admit ultraviolet descriptions as \({\mathcal{N}=(2,2)}\) gauge theories (gauged linear sigma models). We conjecture that the two-sphere partition function of such ultraviolet gauge theories—recently computed via localization by Benini et al. and Doroud et al.—yields the exact Kähler potential on the quantum Kähler moduli space for Calabi–Yau threefold target spaces. In particular, this allows one to compute the genus zero Gromov–Witten invariants for any such Calabi–Yau threefold without the use of mirror symmetry. More generally, when the infrared superconformal fixed point is used to compactify string theory, this provides a direct method to compute the spacetime Kähler potential of certain moduli (e.g., vector multiplet moduli in type IIA), exactly in α′. We compute these quantities for the quintic and for Rødland’s Pfaffian Calabi–Yau threefold and find agreement with existing results in the literature. We then apply our methods to a codimension four determinantal Calabi–Yau threefold in \({\mathbb{P}^{7}}\) , recently given a nonabelian gauge theory description by the present authors, for which no mirror Calabi–Yau is currently known. We derive predictions for its Gromov–Witten invariants and verify that our predictions satisfy nontrivial geometric checks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dixon, L.J.: Some world-sheet properties of superstring compactifications, on orbifolds and otherwise. In: Superstrings, Unified Theories, and Cosmology 1987, G. Furlan et al., eds., Singapore, New Jersey, Hong Kong: World Scientific, 1988, pp. 67–126

  2. Lerche W., Vafa C., Warner N.P.: Chiral rings in N = 2 superconformal theories. Nucl. Phys. B 324, 427–474 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Candelas P., Lynker M., Schimmrigk R.: Calabi–Yau manifolds in weighted \({{\mathbb{P}}_4}\) . Nucl. Phys. B 341, 383–402 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Aspinwall P.S., Lütken C.A., Ross G.G.: Construction and couplings of mirror manifolds. Phys. Lett. B 241, 373–380 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. Greene B.R., Plesser M.R.: Duality in Calabi–Yau moduli space. Nucl. Phys. B 338, 15–37 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. Candelas P., De La Ossa X.C., Green P.S., Parkes L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Gromov M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dine M., Seiberg N., Wen X.G., Witten E.: Nonperturbative effects on the string world sheet (II). Nucl. Phys. B 289, 319–363 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. Witten E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Candelas P., de la Ossa X., Font A., Katz S., Morrison D.R.: Mirror symmetry for two parameter models-I. Nucl. Phys. B 416, 481–562 (1994)

    Article  ADS  MATH  Google Scholar 

  11. Candelas P., Font A., Katz S., Morrison D.R.: Mirror symmetry for two parameter models-II. Nucl. Phys. B 429, 626–674 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hosono S., Klemm A., Theisen S., Yau S.-T.: Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces. Commun. Math. Phys. 167, 301–350 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Hosono S., Klemm A., Theisen S., Yau S.-T.: Mirror symmetry, mirror map and applications to complete intersection Calabi–Yau spaces. Nucl. Phys. B 433, 501–554 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. Givental A.B.: Equivariant Gromov–Witten invariants. Int. Math. Res. Not 1996, 613–663 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lian B.H., Liu K., Yau S.-T.: Mirror principle. I. Asian J. Math. 1, 729–763 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Witten E.: Phases of N =  2 theories in two dimensions. Nucl. Phys. B 403, 159–222 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Morrison D.R., Plesser M.R.: Summing the instantons: quantum cohomology and mirror symmetry in toric varieties. Nucl. Phys. B 440, 279–354 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Hori K., Tong D.: Aspects of non-abelian gauge dynamics in two-dimensional \({\mathcal{N}=(2,2)}\) theories. JHEP 0705, 079 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Donagi R., Sharpe E.: GLSMs for partial flag manifolds. J. Geom. Phys. 58, 1662–1692 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hori, K.: Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories, http://arxiv.org/abs/1104.2853v1 [hep-th], 2011

  21. Jockers H., Kumar V., Lapan J.M., Morrison D.R., Romo M.: Nonabelian 2D gauge theories for determinantal Calabi–Yau varieties. JHEP 1211, 166 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Benini, F., Cremonesi, S.: Partition functions of \({\mathcal{N}=(2,2)}\) gauge theories on S 2 and vortices. http://arxiv.org/abs/1206.2356v2 [hep-th] 2012

  23. Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D = 2 supersymmetric gauge theories. http://arxiv.org/abs/1206.2606v2 [hep-th], 2012

  24. Böhm, J.: Mirror symmetry and tropical geometry. http://arxiv.org/abs/0708.4402v1 [math.AG], 2007

  25. Böhm, J.: A framework for tropical mirror symmetry. http://arxiv.org/abs/1103.2673v1 [math.AG], 2011

  26. de Wit B., Van Proeyen A.: Potentials and symmetries of general gauged N=2 supergravity: Yang–Mills models. Nucl. Phys. B 245, 89–117 (1984)

    Article  ADS  Google Scholar 

  27. Bryant, R.L., Griffiths, P.A.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. In: Arithmetic and geometry, Vol. II (Boston, MA), Progr. Math., Vol. 36, Boston, MA: Birkhäuser Boston, 1983, pp. 77–102

  28. Strominger A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Candelas P., de la Ossa X.: Moduli space of Calabi–Yau manifolds. Nucl. Phys. B 355, 455–481 (1991)

    Article  ADS  MATH  Google Scholar 

  30. Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Craps B., Roose F., Troost W., Van Proeyen A.: What is special Kähler geometry? Nucl. Phys. B 503, 565–613 (1997)

    MATH  MathSciNet  Google Scholar 

  32. Freed D.S.: Special Kähler manifolds. Commun. Math. Phys. 203, 31–52 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Carlson J., Green M., Griffiths P., Harris J.: Infinitesimal variations of Hodge structure. I. Comp. Math. 50, 109–205 (1983)

    MATH  MathSciNet  Google Scholar 

  34. Morrison, D.R.: Mathematical aspects of mirror symmetry. In: Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., Vol. 3, Providence, RI: Amer. Math. Soc., 1997, pp. 265–327

  35. Moore G.W., Witten E.: Self-duality, Ramond–Ramond fields, and K-theory. JHEP 0005, 032 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. Mukai, S.: On the moduli space of bundles on K3 surfaces. I. In: Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., Vol. 11, Bombay: Tata Inst. Fund. Res., 1987, pp. 341–413

  37. Brunner I., Douglas M.R., Lawrence A.E., Römelsberger C.: D-branes on the quintic. JHEP 0008, 015 (2000)

    Article  ADS  Google Scholar 

  38. Mayr P.: Phases of supersymmetric D-branes on Kahler manifolds and the McKay correspondence. JHEP 0101, 018 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kontsevich M., Manin Y.: Gromov–Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164, 525–562 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Ruan Y., Tian G.: A mathematical theory of quantum cohomology. J. Diff. Geom. 42, 259–367 (1995)

    MATH  MathSciNet  Google Scholar 

  41. Kontsevich, M.: Enumeration of rational curves via torus actions. In: The moduli space of curves (Texel Island, 1994), Progr. Math., Vol. 129, Boston, MA: Birkhäuser Boston, 1995, pp. 335–368

  42. Morrison D.R.: Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Am. Math. Soc. 6, 223–247 (1993)

    Article  MATH  Google Scholar 

  43. Deligne, P.: Local behavior of Hodge structures at infinity. In: Mirror symmetry, II. AMS/IP Stud. Adv. Math., Vol. 1, Providence, RI: Amer. Math. Soc., 1997, pp. 683–699

  44. Morrison, D.R.: Compactifications of moduli spaces inspired by mirror symmetry. In: Journées de Géométrie Algébrique d’Orsay (Juillet 1992), Astérisque, Vol. 218. Paris: Société Mathématique de France, 1993, pp. 243–271

  45. Grisaru M.T., van de Ven A., Zanon D.: Four loop beta function for the N=1 and N=2 supersymmetric nonlinear sigma model in two-dimensions. Phys. Lett. B 173, 423 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  46. Aspinwall P.S., Morrison D.R.: Topological field theory and rational curves. Commun. Math. Phys. 151, 245–262 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Cecotti S., Vafa C.: Topological antitopological fusion. Nucl. Phys. B 367, 359–461 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Festuccia G., Seiberg N.: Rigid supersymmetric theories in curved superspace. JHEP 1106, 114 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. Witten E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Losev A., Nekrasov N., Shatashvili S.L.: Issues in topological gauge theory. Nucl. Phys. B 534, 549–611 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Losev, A., Nekrasov, N., Shatashvili, S.: Testing Seiberg–Witten solution. In: Strings, branes and dualities (Cargèse, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 520. Dordrecht: Kluwer Acad. Publ., 1999, pp. 359–372

  52. Nekrasov N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)

    Article  MathSciNet  Google Scholar 

  53. Pestun V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Kapustin A., Willett B., Yaakov I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 1003, 089 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  55. Hama N., Hosomichi K., Lee S.: SUSY gauge theories on squashed three-spheres. JHEP 1105, 014 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  56. Pasquetti S.: Factorisation of N = 2 theories on the squashed 3-sphere. JHEP 1204, 120 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  57. Beem, C., Dimofte, T., Pasquetti, S.: Holomorphic Blocks in Three Dimensions. http://arxiv.org/abs/1211.1986v1 [hep-th], 2012

  58. Zamolodchikov A.: Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730–732 (1986)

    ADS  MathSciNet  Google Scholar 

  59. Periwal V., Strominger A.: Kähler geometry of the space of N=2 superconformal field theories. Phys. Lett. B 235, 261 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  60. Cecotti S., Vafa C.: Exact results for supersymmetric sigma models. Phys. Rev. Lett. 68, 903–906 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Rødland E.A.: The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian G(2,7). Comp. Math. 122, 135–149 (2000)

    Article  Google Scholar 

  62. Tjøtta E.N.: Quantum cohomology of a Pfaffian Calabi–Yau variety: verifying mirror symmetry predictions. Comp. Math. 126, 79–89 (2001)

    Article  Google Scholar 

  63. Batyrev V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Alg. Geom. 3, 493–535 (1994)

    MATH  MathSciNet  Google Scholar 

  64. Batyrev, V.V., Borisov, L.A.: On Calabi–Yau complete intersections in toric varieties. In: Higher-dimensional complex varieties (Trento, 1994), Berlin: de Gruyter, 1996, pp. 39–65

  65. Batyrev V.V., van Straten D.: Generalized hypergeometric functions and rational curves on Calabi–Yau complete intersections in toric varieties. Commun. Math. Phys. 168, 493–533 (1995)

    Article  ADS  MATH  Google Scholar 

  66. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants and multidimensional determinants. Boston, MA: Birkhäuser Boston, 1994

  67. Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D.: Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians. Nucl. Phys. B 514, 640–666 (1998)

    Article  ADS  MATH  Google Scholar 

  68. Gulliksen T.H., Negård O.G.: Un complexe résolvant pour certains idéaux déterminantiels. C. R. Acad. Sci. Paris Sér. A–B 274, A16–A18 (1972)

    Google Scholar 

  69. Gross M., Popescu S.: Calabi–Yau threefolds and moduli of abelian surfaces. I. Comp. Math 127, 169–228 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  70. Bertin M.-A.: Examples of Calabi–Yau 3-folds of \({\mathbb{P}^7}\) with \({\rho=1}\) . Can. J. Math. 61, 1050–1072 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  71. Kapustka M., Kapustka G.: A cascade of determinantal Calabi–Yau threefolds. Math. Nachr. 283, 1795–1809 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  72. Namikawa Y.: Deformation theory of Calabi–Yau threefolds and certain invariants of singularities. J. Alg. Geom. 6, 753–776 (1997)

    MATH  MathSciNet  Google Scholar 

  73. Ciocan-Fontanine I., Kim B., Sabbah C.: The abelian/nonabelian correspondence and Frobenius manifolds. Invent. Math. 171, 301–343 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  74. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In: Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 180, Providence, RI: Amer. Math. Soc., 1997, pp. 103–115

  75. Kim B.: Quantum hyperplane section theorem for homogeneous spaces. Acta Math. 183, 71–99 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  76. Clemens C.H.: Double solids. Adv. Math. 47, 107–230 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  77. Friedman R.: Simultaneous resolution of threefold double points. Math. Ann. 274, 671–689 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  78. Reid M.: The moduli space of 3-folds with K = 0 may nevertheless be irreducible. Math. Ann. 278, 329–334 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  79. Candelas P., Green P.S., Hübsch T.: Rolling among Calabi–Yau vacua. Nucl. Phys. B 330, 49 (1990)

    Article  ADS  Google Scholar 

  80. Greene B.R., Morrison D.R., Strominger A.: Black hole condensation and the unification of string vacua. Nucl. Phys. B 451, 109–120 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  81. Li A.-M., Ruan Y.: Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds. Invent. Math. 145, 151–218 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  82. Libgober A., Teitelbaum J.: Lines on Calabi–Yau complete intersections, mirror symmetry, and Picard–Fuchs equations. Int. Math. Res. Not 1993, 29–39 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  83. Hosono, S., Takagi, H.: Mirror symmetry and projective geometry of Reye congruences I. J. Alg. Geom. toappear, doi:10.1090/s1056-3911-2013-00618-9.2013

  84. Morrison, D.R., Beyond the Kähler cone. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, M. Teicher, ed., Israel Math. Conf. Proc., Vol. 9, Ramat-Gan: Bar-Ilan University, 1996, pp. 361–376

  85. Coates T., Corti A., Iritani H., Tseng H.-H.: Computing genus-zero twisted Gromov–Witten invariants. Duke Math. J. 147, 377–438 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  86. Bayer A., Cadman C.: Quantum cohomology of \({[\mathbb{C}^N/\mu_r]}\) . Comp. Math. 146, 1291–1322 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  87. Bouchard V., Klemm A., Mariño M., Pasquetti S.: Remodeling the B-model. Commun. Math. Phys. 287, 117–178 (2009)

    Article  ADS  MATH  Google Scholar 

  88. Horja, R.P.: Hypergeometric functions and mirror symmetry in toric varieties. http://arxiv.org/abs/math/9912109v3 [math A6], 2000

  89. Hori, K., Vafa, C.: Mirror symmetry. http://arxiv.org/abs/hep-th/0002222v3, 2000

  90. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Willey & Sons, Inc., 1994

  91. Fulton, W.: Intersection theory. Ergeb. Math. Grenzgeb. (3), Vol. 2, Berlin: Springer, 1984

  92. Bott, R., Tu, L.W.: Differential forms in algebraic topology. Graduate Texts in Mathematics, Vol. 82, New York: Springer, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Lapan.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jockers, H., Kumar, V., Lapan, J.M. et al. Two-Sphere Partition Functions and Gromov–Witten Invariants. Commun. Math. Phys. 325, 1139–1170 (2014). https://doi.org/10.1007/s00220-013-1874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1874-z

Keywords

Navigation