Skip to main content
Log in

Creep, Strength, and Fracture Toughness of Niobium-Based Intermetallic-Hardened Laminated Composites

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure, the strength at high temperatures, and the fracture toughness of the composites fabricated under various conditions of diffusion welding of stacks of Nb foils with coatings made of a mixture of Nb, Ti, Mo, Si, ZrH2, Cr, and Al powders are studied. The strength in the temperature range of 1100–1300°C changes from 490 to 350 MPa, the fracture toughness at room temperature is 15.6 MPa m1/2, and the creep resistance determined in 100-h tests at a residual strain tolerance of 1% at 1150°C is 90 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Skibin, V. E. Saren, N. M. Savin, and S. M. Frolov, Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics (Torus Press, Moscow, 2006).

    Google Scholar 

  2. High-Temperature Gas Turbines, Ed. by M. Ya. Ivanov (Torus Press, Moscow, 2010).

    Google Scholar 

  3. O. G. Ospennikova, “Strategy of development of high-temperature alloys, special-purpose steels, and protective and heat-protective coatings,” Aviats. Mater. Tekhn., No. 5, 19–36 (2012).

  4. M. R. Jackson, B. P. Bewley, R. G. Rowe, D. V. Skelly, and H. A. Lipsitt, “High temperature refractory metal–intermetallic composites,” JOM 48 (1), 39–44 (1996).

    Article  CAS  Google Scholar 

  5. B. P. Bewley, M. R. Jackson, and P. R. Subramanian, “Treatment of high temperature refractory composites metal–silicide in situ,” JOM 51 (4), 32–36 (1999).

    Article  Google Scholar 

  6. B. P. Bewley, M. R. Jackson, J. S. Zhao, and P. R. Subramanian, “A review of very-high-temperature Nb-silicide-based composites,” Metall. Mater. Trans. A 34, 2043–2052 (2003).

    Article  Google Scholar 

  7. I. L. Svetlov, Yu. A. Abuzin, B. N. Babich, S. Ya. Vlasenko, I. Yu. Efimochkin, and O. B. Timofeeva, “High-temperature niobium composites reinforced with niobium silicides,” Zh. Funkts. Mater. 1 (2), 48–53 (2007).

    Google Scholar 

  8. Structure and Properties of Intermetallic Materials with Nanophase Hardening, Ed. by E. N. Kablov and Yu. R. Kolobov (MISiS, Moscow, 2008).

  9. V. P. Korzhov and M. I. Karpov, “Structure of high-temperature alloys of the Nb–Si system with 3 and 6 wt % Si formed by zone melting,” Materialoved., No. 11, 39–43 (2009).

  10. M. I. Karpov, V. I. Vnukov, T. S. Stroganova, D. V. Prokhorov, I. S. Zheltyakova, B. A. Gnesin, V. M. Kiiko, and I. P. Svetlov, “Influence of silicon content on the microstructure and mechanical properties of an alloy based on the niobium–silicon system,” Izv. Ross. Akad. Nauk, Ser. Fiz. 83 (10), 1353–1361 (2019).

    Google Scholar 

  11. Q. Lu, Y. Hao, Y. Wang, P. Feng, and J. Fan, “Microstructural evolution and high-temperature oxidation mechanisms of a Ti–Mo–Si composite,” Corros. Sci. 161, 108180 (2019).

    Article  CAS  Google Scholar 

  12. J. Sun, Q. G. Fu, T. Li, C. Wang, C. X. Huо, H. Zhou, and L. Sun, “A long-term ultrahigh temperature application of a layered silicide coated Nb alloy in air,” Appl. Surf. Sci. 439, 1111–1118 (2018).

    Article  CAS  Google Scholar 

  13. M. Sankar, V. V. Satya Prasad, R. G. Baligidad, M. Z. Alam, D. K. Das, and A. A. Gokhale, “Microstructure, oxidation resistance and tensile properties of silicide coated Nb-alloy C-103,” Mater. Sci. Eng., A 645, 339–346 (2015).

    Article  CAS  Google Scholar 

  14. Actual Problems of Strength: A Monograph, Ed. by V. V. Rubanik (UO VGTU, Vitebsk, 2018), Vol. 1.

    Google Scholar 

  15. J. L. Puchou and F. Pichoir, “A new model of quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples,” Res. Aerospatiale 3, 13–38 (1984).

    Google Scholar 

  16. I. A. Birger and R. R. Mavlyutov, Strength of Materials: A Textbook (Nauka, Moscow, 1986).

    Google Scholar 

  17. V. I. Feodos’ev, Strength of Materials (Nauka, Moscow, 1979).

    Google Scholar 

  18. D. Broek, Fundamentals of Fracture Mechanics (Vysshaya Shkola, Moscow, 1980).

    Google Scholar 

  19. V. M. Kiiko, “Effective surface energy of materials under bending conditions,” in Proceedings of the IX International Conference on Phase Transformations and Crystal Strength (Chernogolovka, 2016), p. 156.

  20. I. L. Svetlov, M. I. Karpov, T. S. Stroganova, D. V. Zaitsev, and Yu. V. Artemenko, “In-situ high-temperature creep of Nb–Si composites,” Deform. Razrushenie Mater., No. 11, 2–6 (2019).

  21. V. M. Kiiko and V. P. Korzhov, “The structure, heat resistance and fracture toughness of a laminate composite based on niobium with boridosilicate strengthening,” J. Int. Sci. Publ.: Mater., Methods Techn. 11, 28–37 (2017).

    Google Scholar 

Download references

Funding

This work was carried out within the framework of state assignment no. 0028-2019-0020 and was supported by the Russian Foundation for Basic Research (project no. 20-03-00296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Prokhorov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, D.V., Korzhov, V.P., Kiiko, V.M. et al. Creep, Strength, and Fracture Toughness of Niobium-Based Intermetallic-Hardened Laminated Composites. Russ. Metall. 2021, 1250–1254 (2021). https://doi.org/10.1134/S003602952110027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602952110027X

Keywords:

Navigation