Skip to main content
Log in

The Structure and Fracture Pattern of a Сu–Ti–Al–Ni–Fe–C–B Composite after Abrasive Wear

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure, chemical and phase compositions, hardness, and wear resistance of a Cu–Ti–Al–Ni–Fe–C–B composite prepared by self-propagating high-temperature synthesis (SHS) have been studied. The matrix was formed by Сu–8.5Al–5.0Ni–4.0Fe–1.0Si–0.2Cr aluminum bronze. The powders of Ti, C, and B4C were used for synthesis. The composite matrix is shown to be a copper-based solid solution, which contains eutectic (Cu + (Ni,Fe)Al) regions with the microhardness of 900 HV 0.1. The strengthening phases are TiC and TiB2. The microhardness of (γ + TiC) regions is 550 HV 0.1, and that of (Cu + TiB2 + TiC) regions is 700 HV 0.1. The integral hardness of the composite is 62 HRC. The (γ + TiC) regions are the most plastic structural component of the composite, which are characterized by a high maximum indentation depth, the total mechanical work of indentation and a component of plastic indentation work (φ), and indentation creep (СIT). Abrasive wear results in cut-off of the surface layers of the structural components (Cu + TiC) and (Cu + (Ni,Fe)Al) with the formation of a smooth surface. The roughness of the sample surface does not exceed 2.8 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. G. Merzhanov, Solid Flame Combustion (ISMAN, Chernogolovka, 2000) [in Russian].

    Google Scholar 

  2. A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Metallurgy of Self-Propagating High-Temperature Synthesis of Materials (Mashinostroenie, Moscow, 2007) [in Russian].

    Google Scholar 

  3. X. Zhang, N. Liu, C. Rong, and J. Zhou, “Microstructure and mechanical properties of TiC–TiN–Zr–WC–Ni–Co cermets,” Ceram. Int. 35, 1187–1193 (2009).

    Article  CAS  Google Scholar 

  4. J. S. Kim, D. V. Dudina, J. C. Kom, Y. S. Kwon, J. J. Park, and C. K. Rhu, “Properties of Cu-based nanocomposites produced by mechanically-activated self-propagating high-temperature synthesis and spark–plasma sintering,” J. Nanosci. Nanotechnol. 10, 252–257 (2010).

    Article  CAS  Google Scholar 

  5. O. N. T. Yoang, V. N. Hoang, J. S. Kim, and D. V. Dudina, “Strucrural investigation of TiC–Cu nanocomposites prepared by ball milling and spark plasma sintering,” Metals 7, 123 (2017).

    Article  Google Scholar 

  6. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metal Science and Heat Treatment of Non-Ferrous Metals and Alloys (MISiS, Moscow, 2005) [in Russian].

  7. A. M. Zakharov, Phase Diagram of Binary and Ternary Systems (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  8. Yu. I. Golovin, Nanoindentation and its Possibilities (Mashinostroenie, Moscow, 2009) [in Russian].

    Google Scholar 

  9. A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behavior,” Wear 246, 1–11 (2000).

    Article  CAS  Google Scholar 

  10. S. V. Smirnov, N. B. Pugacheva, A. V. Tropotov, and A. N. Soloshenko, “Resistance to deformation of structural constituents of a high-alloy brass,” Phys. Met. Metallogr. 91 (2), 210–219 (2001).

    Google Scholar 

  11. S. V. Smirnov, N. B. Pugacheva, A. N. Soloshenko, and A. V. Tropotov, “Plastic deformation of a high-alloy brass,” Phys. Met. Metallogr. 93 (6), 91–100 (2002).

    CAS  Google Scholar 

  12. S. V. Smirnov and E. O. Smirnova, “A technique for determining coefficients of the “stress–strain” diagram by nanoscratch test results,” J. Mater. Res. 28, 1730–1736 (2014).

    Article  Google Scholar 

  13. I. A. Veretennikova, N. B. Pugacheva, E. O. Smirnova, and N. S. Michurov, “Laser welding of titanium alloy VT1-0 and steel 12Kh18N10T with an intermediate copper insert,” Pis’ma Mater. 8 (1), 42–47 (2018).

    Google Scholar 

  14. S. Smirnov, M. Myasnikova, and N. Pugacheva, “Hierarchical simulation of plastic deformation and fracture of complexly alloyed brass,” Int. J. Damage Mech. 25, 251–265 (2016).

    Article  CAS  Google Scholar 

  15. L. M. Rybakova and L. I. Kuksenova, Structure and Wear Resistance of Metal (Mashinostroenie, Moscow, 1983) [in Russian].

    Google Scholar 

  16. N. B. Pugacheva, Yu. V. Nikolin, E. I. Senaeva, and I. Yu. Malygina, “Structure of Fe–Ni–Ti–C–B SHS composites,” Phys. Met. Metallogr. 120 (11), 1078–1084 (2019).

    Article  CAS  Google Scholar 

  17. B. V. Nikolin, M. B. Matevosyan, S. P. Kochugov, and N. B. Pugacheva, RF Patent No. 2680489 (2017).

  18. N. B. Pugacheva, Tu. V. Nikolin, I. Yu. Malygina, and E. B. Trushina, “Formation of the structure of Fe–Ni–Ti–C–B composites under self-propagating high-temperature synthesis,” AIP Conf. Proc. 2053, 020013 (2018). https://doi.org/10.1063/1.5084359

    Article  CAS  Google Scholar 

  19. N. B. Pugacheva, Yu. V. Nikolin, and E. I. Senaeva, “The structure and wear resistance of a Ti–Ni–Fe–C–B composite,” AIP Conf. Proc. 2176, 020007 (2019). https://doi.org/10.1063/1.5135119

    Article  CAS  Google Scholar 

  20. GOST R 8.748–2011 (ISO 14577–1: 2002) Metals and Alloys. Measurement of Hardness and Other Characteristics of Materials During Instrumental Indentation (Standartinform, Moscow, 2012), p. 32 [in Russian].

  21. M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52, 966–974 (2007). https://doi.org/10.1134/S1063774507060065

    Article  CAS  Google Scholar 

  22. Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus, and the work of indentation,” Appl. Phys. Lett. 73, 614–616 (1998). https://doi.org/10.1063/1.121873

    Article  CAS  Google Scholar 

  23. P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure-property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174–175, 725–731 (2003). https://doi.org/10.1016/S0257-8972(03)00576-0

    Article  CAS  Google Scholar 

  24. A. V. Makarov, L. G. Korshunov, I. Yu. Malygina, and A. L. Osintseva, “Effect of laser quenching and subsequent heat treatment on the structure and wear resistance of a cemented steel 20KhN3A,” Phys. Met. Metallogr. 103 (5), 507–518 (2007).

    Article  Google Scholar 

  25. A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan, I. Yu. Malygina, and A. L. Osintseva, “Eddy-current testing of the structure, hardness and abrasive wear resistance of laser-hardened and subsequently tempered high-strength cast iron,” Diagn., Resour. Mech. Mater. Struct., No. 6, 90–103 (2015). https://doi.org/10.17804/2410-9908.2015.6.090-103

  26. R. A. Savrvi, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel,” Phys. Met. Metallogr. 121 (10), 1015–1020 (2020).

    Article  Google Scholar 

  27. N. B. Pugacheva, Yu. V. Nikolin, T. M. Bykova, and E. I. Senaeva, “Structure of Fe–Ni–Ti–C–B SHS composites,” Phys. Met. Metallogr. 123 (1), 1078–1084 (2022). https://doi.org/10.31857/S0015323022010107

    Article  Google Scholar 

  28. M. M. Khrushchov and M. A. Babichev, Abrasion Wear (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russia Science Foundation, project no. 22-29-00188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Pugacheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugacheva, N.B., Bykova, T.M. & Senaeva, E.I. The Structure and Fracture Pattern of a Сu–Ti–Al–Ni–Fe–C–B Composite after Abrasive Wear. Phys. Metals Metallogr. 123, 963–970 (2022). https://doi.org/10.1134/S0031918X22600920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22600920

Keywords:

Navigation