Skip to main content
Log in

Modification of the Cationic Composition of LiNbO3 and LiTaO3 Nanopowders in Calcium-Containing Chloride Melts

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The ionic compositions of lithium metaniobate and metatantalate nanopowders are modified in calcium-containing chloride melts. The reaction products are studied by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and elemental chemical analysis. The results of the studies show that the surface layer of the modified small-size particles of the lithium niobate or lithium tantalate powders is enriched in calcium metaniobate or metatantalate (CaNb2O6 or CaTa2O6) formed due to the isomorphic heterovalent substitution of calcium ions for lithium ions in molten LiCl–CaCl2 and KCl–CaCl2 mixtures at 700 and 750°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Kuz’minov, Lithium Niobate and Tantalate as Materials for Nonlinear Optics (Nauka, Moscow, 1975).

    Google Scholar 

  2. M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, Segnetoelectric Solid Solutions Based on Niobium and Tantalum Oxides (Nauka, St. Petersburg, 2002).

    Google Scholar 

  3. T. Kimura, “Molten salt synthesis of ceramic powders,” in Advances in Ceramics—Synthesis and Characterization, Processing and Specific Application, Ed. by C. Sikalidis (In Tech., 2011), pp. 75–100.

  4. L. Li, J. Deng, J. Cheng, and X. Xing, Chem. Sci. 7, 855–865 (2016). https://doi.org/10.1039/c5sc03521j

    Article  CAS  Google Scholar 

  5. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, Nature 447, 1098–1101 (2007). https://doi.org/10.1038/nature05921

    Article  CAS  Google Scholar 

  6. Ch.-Y. Xu, L. Zhen, R. Yang, and Z. L. Wang, J. Am. Chem. Soc. 129, 15444–15445 (2007). https://doi.org/10.1021/ja077251t

    Article  CAS  Google Scholar 

  7. F. Subhan, S. Azam, G. Khan, M. Irfan, S. Muhammad, A. G. Al-Sehemi, S. H. Naqib, R. Khenata, S. Khan, I. V. Kityki, and B. Amin, J. Alloys Compd. 785, 232–239 (2019). https://doi.org/10.1016/j.jallcom.2019.01.140

    Article  CAS  Google Scholar 

  8. V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, and T. V. Morozova, Ferroelectrics 138, 23–36 (1993). https://doi.org/10.1080/00150199308017712

    Article  CAS  Google Scholar 

  9. W. T. Hsu, Z. B. Chen, C. C. Wu, R. K. Choubey, and C. W. Lan, “Optical properties of Mg, Fe, Co-doped near-stoichiometric LiTaO3 single crystals,” Materials 5, 227–238 (2012).

    Article  CAS  Google Scholar 

  10. V. Khokhlov, D. Modenov, V. Dokutovich, V. Kochedykov, I. Zakir’yanova, E. Vovkotrub, and I. Beketov, “Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles,” MRS Commun. 4, 15–18 (2014).

    Article  CAS  Google Scholar 

  11. D. V. Modenov, V. N. Dokutovich, V. A. Khokhlov, B. D. Antonov, V. A. Kochedykov, and I. D. Zakir’yanova, Russ. Metall. (Metally), No. 2, 86–89 (2013). https://doi.org/10.1134/S0036029513020092

  12. V. A. Khokhlov, V. N. Dokutovich, N. A. Viugin, and K. O. Bobrova, Russ. Metall. (Metally), No. 2, 90–96 (2019). https://doi.org/10.1134/S0036029519020125

  13. Y. Zhu, S. Lin, Y. Liu, D. Ma, and B. Wang, Mater. Manufact. Proc. 30, 1342–1347 (2015). https://doi.org/10.1080/10426914.2015.1037915

    Article  CAS  Google Scholar 

  14. T. Yang, Y. Liu, L. Zhang, M. Hu, Q. Yang, Z. Huang, and M. Fang, Adv. Powder Technol. 25, 933–936 (2014). https://doi.org/10.1016/j.apt.2014.01.01i

    Article  CAS  Google Scholar 

  15. RRUFF Database. http://rruff.info/Rynersonite/ R080064.

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Pankratov and N.I. Moskalenko (Center for Collective Use “Composition of Matter” at the Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences) for the analysis of the composition and morphology of the modified oxide products.

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-03-00475a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khokhlov.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhlov, V.A., V’yugin, N.A., Dokutovich, V.N. et al. Modification of the Cationic Composition of LiNbO3 and LiTaO3 Nanopowders in Calcium-Containing Chloride Melts. Russ. Metall. 2020, 144–149 (2020). https://doi.org/10.1134/S0036029520020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520020081

Keywords:

Navigation