Skip to main content
Log in

Synthesis of Calcium and Strontium Fluorides Using Li2SO4–Na2SO4 Eutectic Melts

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Calcium fluoride and strontium fluoride powders were prepared from respective alkaline-earth metal sulfates by a chemical reaction carried out in molten salt flux made up of lithium and sodium sulfates at 700°С. The fluorinating agent used was sodium fluoride. The irregular shapes of powder particles are likely to arise from the topotaxic phenomena occurring on the precursor calcium sulfate and strontium sulfate particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Guggenheim, J. Phys. Chem. 64, 938 (1960).

    Article  CAS  Google Scholar 

  2. C. E. Bamberger, Advances in Molt Salt Chemistry, Ed. by J. Braunstein, G. Mamantov, and G. P. N. Y. Smith (Plenum, New York, 1975), p. 177.

    Google Scholar 

  3. P. H. Bergmann, Handbuch der anorganischen Chemie. Syst. Nummer 39: Seltenerdelemente, Teil C.3: Sc, Y, La und Lanthanide. Fluoride, Oxifluoride und zugehogige Alkalidoppelverbindungen (Springer, Berlin, 1976).

  4. B. M. Wanklyn, F. R. Wondre, B. J. Garrard, et al., J. Mater. Sci. 16, 2303 (1981).

    Article  CAS  Google Scholar 

  5. L. N. Demianets, Prog. Cryst. Growth Charact. 21, 299 (1990).

    Article  Google Scholar 

  6. B. P. Sobolev, The Rare Earth Trifluorides, Pt. 2: Introduction to Materials Science of Multiconoinent Metal Fluoride Crystals (Barcelona, 2001).

    Google Scholar 

  7. C. Zhang, J. Chen, Y. Zhou, and D. Li, J. Phys. Chem. C 112, 10083 (2008). https://doi.org/10.1021/jp802083q

    Article  CAS  Google Scholar 

  8. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluor. Chem. 132, 1012 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.025

    Article  CAS  Google Scholar 

  9. P. P. Fedorov, S. V. Kuznetsov, M. N. Mayakova, et al., Russ. J. Inorg. Chem. 56, 1525 (2011). https://doi.org/10.1134/S003602361110007X

    Article  CAS  Google Scholar 

  10. V. Bartůněk, V. Jakeš, V. Král, and J. Rak, J. Fluorine Chem. 135, 358 (2012). https://doi.org/10.1016/j.jfluchem.2011.09.003

    Article  CAS  Google Scholar 

  11. B. E. G. Lucier, K. E. Johnston, D. C. Arnold, et al., J. Phys. Chem. 118, 1213 (2014). https://doi.org/10.1021/jp408148b

    Article  CAS  Google Scholar 

  12. R. Naccache, Q. Yu, and J. A. Capabianco, Adv. Opt. Mater. 3, 482 (2015). https://doi.org/10.1002/adom20140062.8

    Article  CAS  Google Scholar 

  13. M. Wilkening, A. Duvel, F. Preishuber-Pflugl, et al., Z. Kristallogr. 232, 107 (2016). https://doi.org/10.1515/zkri-2016-1963

    Article  CAS  Google Scholar 

  14. S. V. Kuznetsov, A. N. Kozlova, V. V. Voronov, et al., Russ. J. Inorg. Chem. 64, 293 (2018). https://doi.org/10.1134/S0036023618030130

    Article  Google Scholar 

  15. P. P. Fedorov and A. A. Alexandrov, J. Fluorine Chem. 227, 109374 (2019). https://doi.org/10.1016/j.jfluchem.2019.109374

    Article  CAS  Google Scholar 

  16. L. R. Batsanova, A. K. Kupriyanova, and V. I. Doroshenko, Neorg. Mater. 7, 1876 (1971).

    CAS  Google Scholar 

  17. L. R. Batsanova, Usp. Khim. 40, 945 (1971).

    Article  CAS  Google Scholar 

  18. M. Ding, C. Lu, L. Cao, et al., CrystEngComm 15, 6015 (2013). https://doi.org/10.1039/c3ce40477c

    Article  CAS  Google Scholar 

  19. X. Huang, G. Hu, Q. Xu, et al., J. Alloys Compd. 616, 652 (2014). https://doi.org/10.1016/j.jallcom.2014.07.067

    Article  CAS  Google Scholar 

  20. L. Hu, J. Chen, L. Fan, et al., J. Am. Ceram. Soc. 97, 1009 (2014). https://doi.org/10.1111/jace.12855

    Article  CAS  Google Scholar 

  21. N. Niu, F. He, L. Wang, et al., J. Nanosci. Nanotechnol. 14, 3509 (2014). https://doi.org/10.1166/jnn.2014.7976

    Article  CAS  PubMed  Google Scholar 

  22. M. Ding, J. Xi, S. Yin, and Z. Ji, Superlattices Microstruct. 83, 390 (2015). https://doi.org/10.1016/j.spmi.2015.03.026

    Article  CAS  Google Scholar 

  23. X. Huang, L. Jiang, Q. Xu, et al., RSC Adv. 7, 41190 (2017). https://doi.org/10.1039/c7ra05479c

    Article  CAS  Google Scholar 

  24. X. Huang, L. Jiang, X. Li, and A. He, J. Alloys Compd. 721, 374 (2017). https://doi.org/10.1016/j.jallcom.2017.05.320

    Article  CAS  Google Scholar 

  25. T. Pornpatdetaudom and K. Serivalsatit, Key Eng. Mater. 766, 34 (2018). https://doi.org/10.4028/www.scientific.net/KEM.766.34

    Article  Google Scholar 

  26. J.-W. Ha, E.-H. Sohn, I. J. Park, et al., Mater. Lett. 209, 357 (2017). https://doi.org/10.1016/j.matlet.2017.08.029

    Article  CAS  Google Scholar 

  27. P. P. Fedorov, M. N. Mayakova, A. A. Alexandrov, et al., Inorganics 6, 38 (2018). https://doi.org/10.3390/inorganics6020038

    Article  CAS  Google Scholar 

  28. P. P. Fedorov, M. N. Mayakova, V. V. Voronov, et al., J. Fluorine Chem. 218, 69 (2019). https://doi.org/10.1016/j.jfluchem.2018.11.018

    Article  CAS  Google Scholar 

  29. T. Kimura, in Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications, Ed. by C. Sikalidis (London, 2011), p. 750. https://doi.org/10.5772/20472

  30. V. I. Posypaiko, E. A. Alekseeva, N. A. Vasina, et al., Melting Diagrams of Salt Systems (Metallurgiya. Moscow, 1977) [in Russian].

    Google Scholar 

  31. P. P. Fedorov, V. Yu. Proydakova, S. V. Kuznetsov, et al., J. Am. Ceram. Soc., 103, 3390 (2020). https://doi.org/10.1111/jace.16996

  32. https://chemiday.com/ru/thermodynamic_inorganic.

  33. P. P. Fedorov, V. Y. Proidakova, S. V. Kuznetsov, and V. V. Voronov, Russ. J. Inorg. Chem. 62, 1508 (2017).

    Article  CAS  Google Scholar 

  34. J. C. Warf, W. D. Cline, and R. D. Tevebaugh, Anal. Chem. 26, 342 (1954). https://doi.org/10.1021/ac60086a019

    Article  CAS  Google Scholar 

  35. D. R. Messier, J. Electrochem. Soc. 115, 397 (1968).

    Article  CAS  Google Scholar 

  36. P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, et al., Russ. J. Inorg. Chem. 61, 14728 (2016).

    Google Scholar 

  37. P. P. Fedorov and V. V. Osiko, Dokl. Phys. 64, 353 (2019). https://doi.org/10.1134/S1028335819090076

    Article  CAS  Google Scholar 

  38. N. N. Oleinikov, Ros. Khim. Zh. 39 (2), 85 (1995).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment of the Shared Facilities Centers of the Prokhorov General Physics Institute and the Kurnakov Institute of General and Inorganic Chemistry was used in the study. The authors appreciate the help of A.E. Baranchikov in SEM experiments.

Funding

This work was fulfilled in the frame of the R&D plan of the Prokhorov General Physics Institute and was partially supported by the Russian Foundation for Basic Research (project no. 2018-18-29-12050-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proydakova, V.Y., Alexandrov, A.A., Voronov, V.V. et al. Synthesis of Calcium and Strontium Fluorides Using Li2SO4–Na2SO4 Eutectic Melts. Russ. J. Inorg. Chem. 65, 834–838 (2020). https://doi.org/10.1134/S0036023620060169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620060169

Keywords:

Navigation