Skip to main content
Log in

Delignification of Wood of Populus tremula by Treatment with Ozone

  • BIOPHYSICAL CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Lignocellulose materials (LCMs) obtained after treatment of aspen (Populus tremula) wood with ozone were studied by diffuse reflectance UV spectroscopy, Raman spectroscopy, and fluorescence spectroscopy. The destruction of lignin (LG) proved most effective in the range of specific ozone consumptions of ≤1.5 mmol/g at ≥50% conversion of ozone. The destruction of syringyl and stilbene structures and other systems of conjugated double bonds of LG with ozone was highly efficient. Delignification of LCMs was accompanied by a multiple increase in the intensity of fluorescence (FL). The FL intensity was correlated with the fraction of LG destroyed by ozone. It was shown that wood treatment with ozone makes it possible to vary the luminescence spectral characteristics of LCMs, and fluorescence spectroscopy can be considered to be one of the most sensitive methods for monitoring the ozonolytic delignification of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. G. Bogolitsyn, Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 48 (6), 105 (2004).

  2. Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Arkhang. Gos. Tekh. Univ., Arkhangel’sk, 2009) [in Russian].

  3. V. G. Samoilovich, S. N. Tkachenko, I. S. Tkachenko, and V. V. Lunin, Theory and Practice of Obtaining and Using Ozone, Ed. by V. V. Lunin (Mosk. Gos. Univ., Moscow, 2016) [in Russian].

    Google Scholar 

  4. N. A. Mamleeva, E. M. Ben’ko, and V. V. Lunin, Methods for the Neutralization of Wastewater, Gas Emissions and Waste from Production and Consumption, Ed. by V. V. Lunin (Mosk. Gos. Univ., Moscow, 2019) [in Russian].

    Google Scholar 

  5. M. M. Ksenofontova, A. N. Mitrofanova, N. A. Mamleeva, A. N. Pryakhin, and V. V. Lunin, Ozone: Sci. Eng. 25, 505 (2003).

    Article  CAS  Google Scholar 

  6. T. Eriksson and J. Gierer, in Proceedings of the International Symposium on Wood and Pulping Chemistry (Tappi and ISWPC, Tsukuba Science City, Japan, 1983), Vol. 4, p. 94.

  7. A. G. Khudoshin, Cand. Sci. (Chem.) Dissertation (Moscow State Univ., Moscow, 2008).

  8. B. Ferron, J. P. Croué, and M. Dore, Ozone: Sci. Eng. 17, 687 (1995). https://doi.org/10.1080/01919512.1995/10555779

    Article  CAS  Google Scholar 

  9. C. Li, L. Wang, Z. Chen, Y. Li, et al., Biores. Technol. 183, 240 (2015).

    Article  CAS  Google Scholar 

  10. E. V. Benko, D. G. Chukhchin, and V. V. Lunin, Holzforschung (2020). https://doi.org/10.1515/hf-2019-0168

  11. Y. Rosen, H. Mamane, and Y. Gerchman, Bioenergy Res. 12, 292 (2019). https://doi.org/10.1007/s12155-019-9962-3

    Article  CAS  Google Scholar 

  12. C. Olkkonen, Y. Tylli, I. Forsskåhl, et al., Holzforschung 54, 397 (2000).

    Article  CAS  Google Scholar 

  13. N. A. Mamleeva, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Russ. J. Bioorg. Chem. 42, 694 (2016). https://doi.org/10.1134/S1068162016070098

  14. N. A. Mamleeva, A. N. Kharlanov, D. G. Chukhchin, N. G. Bazarnova, and V. V. Lunin, Russ. J. Bioorg. Chem. 46, 1330 (2020). https://doi.org/10.1134/S1068162020070080

  15. N. A. Mamleeva, A. N. Kharlanov, S. Yu. Kupreenko, and D. G. Chukhchin, Russ. J. Phys. Chem. A 95, 2214 (2021).

    Article  CAS  Google Scholar 

  16. N. A. Mamleeva, A. V. Shumyantsev, and A. N. Kharlanov, Russ. J. Phys. Chem. A 95, 682 (2021).

    Article  CAS  Google Scholar 

  17. N. A. Mamleeva, E. M. Ben’ko, A. N. Kharlanov, A. V. Shumyantsev and D. G. Chukhchin, Russ. J. Phys. Chem. A 95, 577 (2021).

    Article  CAS  Google Scholar 

  18. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 2550 (2019).

    Article  CAS  Google Scholar 

  19. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 94, 1780 (2020).

    Article  Google Scholar 

  20. U. P. Agarwal, Front. Plant Sci. 5, 490 (2014). https://doi.org/10.3389/fpls.2014.00490

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zh. Ji, J. Ma, and F. Xu, Microsc. Microanal. 20, 566 (2014).

    Article  CAS  Google Scholar 

  22. M. Kihara, M. Takayama, H. Wariishi, and H. Tanaka, Spectrochim. Acta, Part A 58, 2211 (2002).

    Article  Google Scholar 

  23. J. S. Lupoi, S. Singh, R. Parthasarathi, et al., Renewable Sustainable Energy Rev. 49, 871 (2015).

    Article  CAS  Google Scholar 

  24. E. Billa, E. Koutsoula, and E. G. Koukios, Bioresource Technol. 67, 25 (1999).

    Article  CAS  Google Scholar 

  25. A. N. Zakazov and E. I. Chupka, Khim. Drev., No. 2, 52 (1983).

  26. L. Donaldson, IAWA J. 34 (2013).

  27. E. I. Chupka and V. M. Burlakov, Khim. Drev., No. 2, 31 (1984).

  28. B. Albinsson, S. Li, K. Lundquist, and R. Stomberg, J. Mol. Struct. 508, 19 (1999).

    Article  CAS  Google Scholar 

  29. K. Radotić, A. Kalauzi, D. Djikanović, et al., J. Photochem. Photobiol. B 83, 1 (2006). https://doi.org/10.1016/j.jphotobiol.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  30. M. V. Panfilova, D. S. Kosyakov, and K. G. Bogolitsyn, in Proceedings of the Europe Workshop on Lignocelulosics and Pulp. EWLP, Seville, Spain, June 24–27, 2014, p. 627.

  31. M. V. Kuznetsova, D. S. Kosyakov, N. S. Gorbova, and K. G. Bogolitsyn, Russ. J. Phys. Chem. A 94, 1587 (2020).

    Article  CAS  Google Scholar 

  32. A. V. Obolenskaya, Z. P. El’nitskaya, and A. A. Leonovich, in Laboratory Work on the Chemistry of Wood and Cellulose (Ekologiya, Moscow, 1991) [in Russian].

    Google Scholar 

  33. S. D. Razumovskii, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1974), p. 219 [in Russian].

    Google Scholar 

Download references

Funding

This study was performed using the equipment of the Nanochemistry and Nanomaterials Multiaccess Center at the Faculty of Chemistry, Moscow State University, and financially supported by the Ministry of Education and S-cience of the Russian Federation within the framework of the state-budget-supported topic “Physical chemistry of   the surface. Adsorption and catalysis” АААА-А21-121011990019-4 (Ozonolytic Delignification of LCMs: UV and Raman Spectroscopy) and also using the equipment of the Arctic Multiaccess Center of the Northern (Arctic) Federal University under the government contract (project no. 121112300066-3 (Study of the Luminescence Characteristics of Wood)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamleeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamleeva, N.A., Kharlanov, A.N., Kuznetsova, M.V. et al. Delignification of Wood of Populus tremula by Treatment with Ozone. Russ. J. Phys. Chem. 96, 2043–2052 (2022). https://doi.org/10.1134/S0036024422090229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422090229

Keywords:

Navigation