Skip to main content
Log in

Physicochemical Properties of Lignocellulosic Materials from Ozonized Wood

  • BIOPHYSICAL CHEMISTRY AND PHYSICAL AND CHEMICAL BIOLOGY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Lignocellulosic materials (LCMs) obtained after an ozone treatment of pine wood are studied via diffuse reflectance ultraviolet (DRUV) spectroscopy, Raman spectroscopy, and fluorescence spectroscopy. The Raman spectra show that ozonation degrades lignin and hemicelluloses and lowers the content of amorphous cellulose. The Raman spectra of ozonized LCMs are deconvoluted to individual components for the first time. Based on results from analyzing the Raman and DRUV spectra, it is concluded that the aromatic structures of biomass with conjugated –С=С– and >С=О bonds simply degrade, while delignification with ozone is accompanied by a multiple increase in the fluorescence of the LCMs. It is shown that the luminescence spectral characteristics of LCMs are governed by the absorption of ozone, allowing us to identify the ranges of ozone consumption corresponding to the dominant degradation of lignin and polysaccharides in the biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. G. Samoilovich, S. N. Tkachenko, I. S. Tkachenko, and V. V. Lunin, Theory and Practice of Obtaining and Using Ozone, Ed. by V. V. Lunin (Mosk. Gos. Univ., Moscow, 2016) [in Russian].

    Google Scholar 

  2. N. A. Mamleeva, E. M. Ben’ko, and V. V. Lunin, Methods for the Neutralization of Wastewater, Gas Emissions and Waste from Production and Consumption, Ed. by V. V. Lunin (Mosk. Gos. Univ., Moscow, 2019) [in Russian].

    Google Scholar 

  3. O. M. Perrone, F. Colombari, J. Rossi, et al., Bioresour. Technol. 218, 69 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. M. T. Garcia-Cubero, L. G. Palacin, G. Gonzalez-Benito, et al., Bioresour. Technol. 107, 229 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. C. Li, L. Wang, Z. Chen, Y. Li, et al., Bioresour. Technol. 183, 240 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. . E. V. Benko, D. G. Chukhchin, and V. V. Lunin, Holzforschung 74, 1157 (2020).

    Article  CAS  Google Scholar 

  7. N. A. Mamleeva, A. N. Kharlanov, D. G. Chukhchin, et al., Khim. Rastit. Syr’ya, No. 1, 85 (2019).

  8. N. A. Mamleeva, A. N. Kharlanov, S. Yu. Kupreenko, and D. G. Chukhchin, Russ. J. Phys. Chem. A 95, 2214 (2021).

    Article  CAS  Google Scholar 

  9. N. A. Mamleeva, E. M. Ben’ko, A. N. Kharlanov, A. V. Shumyantsev, and D. G. Chukhchin, Russ. J. Phys. Chem. A 95, 577 (2021).

    Article  CAS  Google Scholar 

  10. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 2550 (2019).

    Article  CAS  Google Scholar 

  11. N. A. Mamleeva, A. N. Kharlanov, M. V. Kuznetsova, and D. S. Kosyakov, Russ. J. Phys. Chem. A 96, 2043 (2022).

    Article  CAS  Google Scholar 

  12. E. Billa, E. Koutsoula, and E. G. Koukios, Biores. Technol. 67, 25 (1999).

    Article  CAS  Google Scholar 

  13. A. N. Zakazov and E. I. Chupka, Khim. Drev., No. 2, 52 (1983).

  14. A. N. Papadopoulos, C. A. S. Hill, and A. Gkaraveli, Holz als Roh- Werlag 61, 453 (2003).

  15. V. I. Azarov, Chemistry of Wood and Synthetic Polymers (St. Petersburg, 1999) [in Russian].

    Google Scholar 

  16. A. V. Obolenskaya, Z. P. El’nitskaya, and A. A. Leonovich, Laboratory Work on the Chemistry of Wood and Cellulose (Ekologiya, Moscow, 1991) [in Russian].

    Google Scholar 

  17. U. P. Agarwal, Front. Plant Sci. 5, 490 (2014). https://doi.org/10.3389/fpls.2014.00490

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhe Ji, Jianfeng Ma, and Feng Xu, Microsc. Microanal. 20, 566 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. M. Kihara, M. Takayama, H. Wariishi, and H. Tanaka, Spectrochim. Acta, Part A 58, 2211 (2002).

    Article  Google Scholar 

  20. J. S. Lupoi, S. Singh, R. Parthasarathi, et al., Renewable Sustainable Energy Rev. 49, 871 (2015).

    Article  CAS  Google Scholar 

  21. D. Ciolacu, F. Ciolacu, and V. Popa, Cellulose Chem. Technol. 45, 13 (2011).

    CAS  Google Scholar 

  22. C. E. Molina-Guerrero, G. de la Rosa, H. Castillo-Michel, et al., Chem. Eng. Technol. 41, 1350 (2018).

    Article  CAS  Google Scholar 

  23. Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Arkhang. Gos. Tekh. Univ., Arkhangel’sk, 2009) [in Russian].

  24. H. Sadeghifar and A. Ragauskas, Polymers 12, 1134 (2020). https://doi.org/10.3390/polym12051134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Paulsson and J. Parkas, BioResources 7, 5995 (2012).

    Article  Google Scholar 

  26. D. S. Kosyakov, N. S. Gorbova, K. G. Bogolitsyn, and L. V. Gusakov, Russ. J. Phys. Chem. A 81, 1076 (2007).

    Article  CAS  Google Scholar 

  27. E. I. Chupka and V. M. Burlakov, Khim. Drev., No. 2, 31 (1984).

  28. B. Albinsson, S. Li, K. Lundquist, and R. Stomberg, J. Mol. Struct. 508, 19 (1999).

    Article  CAS  Google Scholar 

  29. L. Donaldson, IAWA J. (2013). https://doi.org/10.1163/2294193200000002

  30. M. V. Panfilova, D. S. Kosyakov, and K. G. Bogoltsin, in Proceedings of the Europe Workshop on Lignocelulosics and Pulp. EWLP, Seville, Spain, June 24–27, 2014, p. 627.

  31. M. V. Kuznetsova, D. S. Kosyakov, N. S. Gorbova, and K. G. Bogolitsyn, Russ. J. Phys. Chem. A 94, 1587 (2020).

    Article  CAS  Google Scholar 

  32. S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1974), p. 219.

    Google Scholar 

  33. C. Olkkonen, Y. Tylli, I. Forsskåhl, et al., Holzforschung 54, 397 (2000).

    Article  CAS  Google Scholar 

  34. H. Kaneko, S. Hosoya, K. Iiyama, and J. Nakano, J. Wood Chem. Technol. 3, R399 (1983).

    Article  Google Scholar 

  35. J. E. Holladay, J. J. Bozell, and J. F. White, Top Value-Added Chemicals from Biomass (USA, 2007), Vol. 2. http://www.ntis.gov/ordering.htm.

Download references

ACKNOWLEDGMENTS

The authors thank Prof. N.G. Bazarnova (Altai State University) for providing our samples of wood.

Funding

This work was performed on equipment at the shared resource center “Nanochemistry and Nanomaterials” of Moscow State University’s Faculty of Chemistry. It was supported by the RF Ministry of Education and Science as part of State Task no. AAA-A21-121011990019-4 “Physical Chemistry of Surfaces, Adsorption, and Catalysis” (ozonolytic delignification of the LCMs, UV and Raman spectro-scopy); and by the shared resource center “Arktika” of Northern (Arctic) Federal University as part of State Task no. FSRU-2021-0009 “Studying the Luminescence Characteristics of Wood Components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamleeva.

Ethics declarations

The authors declare they have no conflict of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamleeva, N.A., Kharlanov, A.N., Kuznetsova, M.V. et al. Physicochemical Properties of Lignocellulosic Materials from Ozonized Wood. Russ. J. Phys. Chem. 97, 790–800 (2023). https://doi.org/10.1134/S0036024423040210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423040210

Keywords:

Navigation