Skip to main content
Log in

Degradation of the Pine Wood Structure in Ozonolytic Delignification

  • PLANT BIOPOLYMERS
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Transformations of pine wood during exposure to ozone were studied. The content of lignin and cellulose in the cellulose-containing material (CCM) from ozonated wood was determined. The polymerization degree (PD) of cellulose from CCM was determined. The CCM samples were examined by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and X-ray diffraction (XRD) analysis. HPLC analysis of water-soluble lignin ozonolysis products was performed. Wood ozonation leads to lignin destruction; 40–42% delignification degree is achieved. The destruction of aromatic components is confirmed by DRIFT spectra. A decrease in the intensity of skeletal vibrations of aromatic ring at 1511 and 1598 cm–1, bands at 1662 cm–1, and an increase in the intensity of stretching C=O vibrations of lignin and hemicelluloses (HCs) at 1736 cm–1 were observed. The stoichiometric ratio of the amount of absorbed ozone and the destroyed guaiacyl units, as well as the composition of water-soluble products, shows that ozonolysis is the main mode of wood lignin destruction. The XRD data and a decrease in PD of cellulose show that, in addition to lignin, HCs and amorphous cellulose are also destroyed during ozonation. It has been found that the region of ozone specific absorption ≤1.5 mmol O3/g corresponds to the most efficient destruction of lignin with the lowest degradation of cellulose fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bogolitsyn, K.G., Modern trends in the chemistry and chemical technology of plant raw materials, Ross. Khim. Zh., 2004, vol. 48, no. 6, pp. 105–123.

    CAS  Google Scholar 

  2. Brochier, B., Kuligowski, C., Voiron, S., and Petit-Conil, M., Overview of the use of ozone in the pulp and paper industry, Ozone News, 2006, vol. 34, no. 6, pp. 21–28.

    Google Scholar 

  3. Travaini, R. Martín-Juárez, J., Lorenzo-Hernando, A., and Bolado-Rodriges, S., Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited, Biores. Technol., 2016, vol. 199, no. 1, pp. 2–10. doi 10 1016/j.biotech.2015.08.143

  4. Mamleeva, N.A., Autlov, S.A., Bazarnova, N.G., and Lunin, V.V., Degradation of polysaccharides and lignin in wood ozonation, Russ. J. Bioorg. Chem., 2016, vol. 42, no. 7, pp. 694–699. https://doi.org/10.1134/S1068162016070098

    Article  CAS  Google Scholar 

  5. Mamleeva, N.A., Kustov, A.L., and Lunin, V.V., Features of the formation of oxidation products during ozonation of wood with different water content, Zh. Fiz. Khim., 2018, vol. 92, no. 9, pp. 1402–1408. https://doi.org/10.1134/S0036024418090182

    Article  Google Scholar 

  6. Mamleeva, N.A., Babayeva, N.A., Kharlanov, A.N., and Lunin, V.V., Destruction of lignin during the ozonation of pine wood, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 1, pp. 37–42. https://doi.org/10.1134/S0044453719010199

    Article  Google Scholar 

  7. Ben’ko, E.M., Manisova, O.R., and Lunin, V.V., Effect of moisture content on the interaction between lignocellulosic materials and ozone, Russ. J. Phys. Chem. A., 2017, vol. 91, no. 7, pp. 1190–1196. https://doi.org/10.1134/s0036024417070056

    Article  CAS  Google Scholar 

  8. Andersen, S.L.F., Castoldi, R., Bracht, A., Peralta, R.A., Alves de Lima, E., Helm, C.V., Moreira, R., and Peralta, R.M., Improving enzymatic saccharification of Eucalyptus grandis branches by ozone pretreatment, Wood Sci. Technol., 2019, vol. 53, Issue 1, pp. 49–69. https://doi.org/10.1007/s00226-018-1061-7

    Article  CAS  Google Scholar 

  9. Li, C., Wang, L., Chen, Z., Li, Y., Wang, R., Luo, X., Cai, G., Li, Y., Yu, Q., and Lu, J., Ozonolysis pretreatment of maize stover: The interactive effect of particle size and moisture content on ozonolysis process, Bioresour. Technol., 2015, vol. 183, no. 1, pp. 240–247. https://doi.org/10.1016/j.biortech.2015.01.042

    Article  CAS  PubMed  Google Scholar 

  10. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornyye raboty po khimii drevesiny i tsellyulozy (Laboratory Work on the Chemistry of Wood and Cellulose), Moscow, 1991.

    Google Scholar 

  11. Yu, Z., Jameel, H., Chang, H., and Park, S., The effect of delignification of forest biomass on enzymatic hydrolysis, Biores. Technol., 2011, vol. 102, pp. 9083–9089. https://doi.org/10.1016/j.biortech.2011.07.001

    Article  CAS  Google Scholar 

  12. Segal, L., Creely, J.J., Martin, A.E., Jr., and Conrad, C.M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Tex. Res. J., 1959, vol. 29, no. 10, pp. 786–794. https://doi.org/10.1177%2F004051755902901003

  13. Schöne, L. and Herrmann, H., Kinetic measurement of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions, Atmos. Chem. Phys., 2014, vol. 14, pp. 4503–4514. https://doi.org/10.5194/acp-14-4503-2014

    Article  CAS  Google Scholar 

  14. Razumovsky, S.D. and Zaikov, G.E., Ozone and Its Reactions with Organic Compounds. Kinetics and Mechanism, Amsterdam, The Nethelands: Elsevier, 1984.

  15. Bailey, P.S., Ozonation of aromatic compounds, in Ozonation in Organic Chemistry, vol. 2: Nonolefinic Compounds, New York, 1982, pp. 31–37.

    Google Scholar 

  16. Pandey, K.K. and Theagarjan, K.S., Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques, Holz als Roh- und Werkstoff., 1997, vol. 55, pp. 383–390. https://doi.org/10.1007/s00107005025

    Article  CAS  Google Scholar 

  17. Schwanninger, M., Rodrigues, J.C., Pereira, H., and Hinterstoisser, B., Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vibr. Spectrosc., 2004, vol. 36, pp. 23–40. https://doi.org/10.1016/j.vibspec.2004.02.003

  18. Bazarnova, N.G., Karpova, Ye.V., Katrakov, et al., Metody issledovaniya drevesiny i ee proizvodnyk (Methods for Studying Wood and Its Derivatives), Barnaul, 2002.

    Google Scholar 

  19. Faix, O. and Böttcher, J.H., The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood, Holz als Roh- und Werkstoff., 1992, vol. 50, pp. 221–226.

    Article  CAS  Google Scholar 

  20. Derkacheva, O.Yu. and Sukhov, D.A., Investigation of lignins by FTIR spectroscopy, Macromol. Symp., 2008, vol. 265, no. 1, pp. 61–68. https://doi.org/10.1002/masy.200850507

    Article  CAS  Google Scholar 

  21. Proniewicz, L.M., Paluszkiewicz, C., Wesełucha-Birczyńska, A., Baran’ski, A., and Dutka, D., FT-IR and FT-Raman study of hydrothermally degraded groundwood containing paper, J. Mol. Struct., 2002, vol. 614, pp. 345–353. https://doi.org/10.1016/S0022-2860(02)00275-2

    Article  CAS  Google Scholar 

  22. Aleshina, L.A., Glazkova, S.V., Lugovskaya, L.A., Podoinikova, M.V., Fofanov, A.D., and Silina, E.V., Modern concepts of the structure of celluloses (review), Khim. Rastit. Syr’ya, 2001, no. 1, pp. 5–36.

  23. Park, S., Baker, J.O., Himmel, M.E, Parilla, P.A., and Johnson, D.K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels, 2010, vol. 3, no. 10. https://doi.org/10.1186/1754-6834-3-10

  24. Baryshnikov, S.V., Sharypov, V.I., Zhizhaev, A.M., Beregovtsova, N.G., and Kuznetsov, B.N., Changes in the structural ordering of aspen wood in the process of its mechanical activation and hydrolysis, J. Sib. Fed. Univ., Ser. Chem., 2010, vol. 3, no. 2, pp. 120–127.

    Google Scholar 

  25. Mamleeva, N.A., Abrosimova, G.E., Kharlanov, A.N., and Lunin, V.V., Transformation of wood during ozonization in the presence of hydrogen peroxide, Russ. J. Phys. Chem. A., 2013, vol. 87, no. 7, pp. 1102–1107. https://doi.org/10.1134/S0036024413070200

    Article  CAS  Google Scholar 

  26. Ragnar, M., Eriksson, T., and Reitberger, T., Radical formation in ozone reactions with lignin and carbohydrate model compounds, Holzforschung, 1999, vol. 53, no. 1, pp. 292–298. https://doi.org/10.1515/HF1999.049

    Article  CAS  Google Scholar 

  27. Staehelin, J. and Hoigné, J., Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 1982, vol. 16, no. 12, pp. 666–681.  https://doi.org/10.1021/es00104a009

    Article  Google Scholar 

  28. Olkkonen, C., Tylli, Y., Forsskåhl, I., Fuhrmann, A., Hausalo, T., Tamminen, T., Hortling, B., and Janson, J., Degradation of model compounds for cellulose and lignocellulosic pulp during ozonation in aquous solution, Holzforschung, 2000, vol. 54, pp. 397–406. https://doi.org/10.1515/HF.2000.067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamleeva.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Statement on the Welfare of Animals

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by G. Levit

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamleeva, N.A., Kharlanov, A.N., Chukhchin, D.G. et al. Degradation of the Pine Wood Structure in Ozonolytic Delignification. Russ J Bioorg Chem 46, 1330–1336 (2020). https://doi.org/10.1134/S1068162020070080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020070080

Keywords:

Navigation