Skip to main content
Log in

Main Pathways of the Transformations of Lignocellulosic Material under the Action of Ozone

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Lignocellulose materials (LMCs) treated with ozone and different amounts of water are studied via Raman spectroscopy, thermal analysis (TA), and scanning electron microscopy (SEM). It is shown that the lignin and hemicelluloses (HCs) in pine wood are destroyed under the effect of ozone. SEM visualization of the porous structure of wood testifies to the destruction of cellulose during ozonation. It is noted that the content of water in wood helps regulate the contribution from reactions that occur on the internal surfaces of pores and result mainly in the destruction of lignin and HCs, along with the modification of lignin and the destruction of cellulose on the external surfaces of LCMs during free radical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. A. Hubbe, O. J. Rojas, L. A. Lucia, and M. Sain, Bioresources 3, 929 (2008).

    Article  Google Scholar 

  2. Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Arkhang. Gos. Tekh. Univ., Arkhangel’sk, 2009) [in Russian].

  3. X. Li and T. H. Kim, Biores. Technol. 102, 4779 (2011).

    Article  CAS  Google Scholar 

  4. C. A. Hubbell and A. J. Razauskas, Biores. Technol. 101 (19), 7410 (2010).

    Article  CAS  Google Scholar 

  5. K. Wang, H. Yang, Q. Chen, and R. Sun, Biores. Technol. 148, 208 (2013).

    Article  Google Scholar 

  6. C. Li, L. Wang, Z. Chen, Y. Li, et al., Biores. Technol. 183, 240 (2015).

    Article  CAS  Google Scholar 

  7. Z. Yu, H. Jameel, H. Chang, and S. Park, Biores. Technol. 102, 9083 (2011).

    Article  CAS  Google Scholar 

  8. M. T. García-Cubero, M. Coca, S. Bolado, and G. Gonzalez-Benito, Chem. Eng. Trans. 21, 1273 (2010).

    Google Scholar 

  9. R. Travaini, J. Martin-Juarez, A. Lorenzo-Hernando, and S. Bolado-Rodriges, Biores. Technol. 199 (1), 2 (2016).

    Article  CAS  Google Scholar 

  10. S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  11. V. G. Samoilovich, S. N. Tkachenko, I. S. Tkachenko, and V. V. Lunin, Theory and Practice of Preparation and Using Ozone, Ed. by V. V. Lunin (Mosk. Gos. Univ., Moscow, 2016) [in Russian].

    Google Scholar 

  12. A. G. Khudoshin, A. N. Mitrofanova, and V. V. Lunin, Russ. J. Phys. Chem. A 86, 360 (2012).

    Article  CAS  Google Scholar 

  13. P. Nompex and M. Dore, Ozone Sci. Eng. 13, 265 (1991).

    Article  CAS  Google Scholar 

  14. E. M. Ben’ko, D. G. Chukhchin, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 2092 (2017).

    Article  Google Scholar 

  15. R. Travaini, M. D. Otero, M. Coca, et al., Biores. Technol. 133, 332 (2013).

    Article  CAS  Google Scholar 

  16. E. V. Benko, D. G. Chukhchin, and V. V. Lunin, Holzforschung (2020). https://doi.org/10.1515/hf-2019-0168

  17. N. A. Mamleeva, E. M. Ben’ko, A. N. Kharlanov, A. V. Shumyantsev, and D. G. Chukhchin, Russ. J. Phys. Chem. A 95, 577 (2021).

    Article  CAS  Google Scholar 

  18. E. M. Ben’ko, O. R. Manisova, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 1190 (2017).

    Article  Google Scholar 

  19. N. A. Mamleeva, A. L. Kustov, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 1675 (2018).

    Article  CAS  Google Scholar 

  20. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 94, 1780 (2020).

    Article  Google Scholar 

  21. N. A. Mamleeva, N. A. Babayeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 28 (2019).

    Article  CAS  Google Scholar 

  22. N. A. Mamleeva, A. N. Kharlanov, D. G. Chukhchin, et al., Russ. J. Bioorg. Chem. 46, 1330 (2020).

  23. N. A. Mamleeva, A. V. Shumyantsev, and V. V. Lunin, Russ. J. Phys. Chem. A 94, 526 (2020).

    Article  CAS  Google Scholar 

  24. J. S. Lupoi, S. Singh, R. Parthasarathi, et al., Renewable Sustainable Energy Rev. 49, 871 (2015).

    Article  CAS  Google Scholar 

  25. M. Kihara, M. Takayama, H. Wariishi, and H. Tanaka, Spectrochim. Acta, Part A 58, 2211 (2002).

    Article  Google Scholar 

  26. Zhe Ji, Jianfeng Ma, and Feng Xu, Microsc. Microanal. 20, 566 (2014).

    Article  CAS  Google Scholar 

  27. K. L. Larsen and S. Barsberg, J. Phys. Chem. B 114, 8009 (2010).

    Article  CAS  Google Scholar 

  28. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 2550 (2019).

    Article  CAS  Google Scholar 

  29. S. R. Loskutov, O. A. Shapchenkova, and A. A. Aniskina, Sib. Lesn. Zh., No. 6, 17 (2015).

  30. S. Wang, B. Ru, H. Lin, and W. Sun, Fuel 50, 243 (2015).

    Google Scholar 

  31. P. S. Bailey, Ozonation in Organic Chemistry, Vol. 2: Nonolefinic Compounds (Academic, New York, 1982), p. 31.

  32. M. Ragnar, T. Eriksson, and T. Reitberger, Holzforschung 53, 292 (1999).

    Article  CAS  Google Scholar 

  33. C. Olkkonen, Y. Tylli, et al., Holzforschung 54, 397 (2000).

    Article  CAS  Google Scholar 

  34. J. Staehelin and J. Hoigné, Environ. Sci. Technol. 16, 666 (1982).

    Article  Google Scholar 

  35. M. B. Roncero, J. F. Colom, and T. Vidal, Carbohydr. Polym. 51, 411 (2003).

    Article  Google Scholar 

  36. Ozone–Cellulose Studies: Physico-Chemical Properties of Ozone Oxidized Cellulosic and Lignocellulosic Materials (MP GODSAY, Inst. New York, 1985).

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the Nanochemistry and Nanomaterials shared resource center of Moscow State University’s Faculty of Chemistry and instrumentation of the Core Facility Centre “Arktika” of Northern (Arctic) Federal University.

Funding

This work was supported by the RF Ministry of Higher Education and Science as part of State Task no. AAAA-A21-121011990019-4, “Surface Physicochemistry, Adsorption, and Catalysis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamleeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamleeva, N.A., Kharlanov, A.N., Kupreenko, S.Y. et al. Main Pathways of the Transformations of Lignocellulosic Material under the Action of Ozone. Russ. J. Phys. Chem. 95, 2214–2221 (2021). https://doi.org/10.1134/S0036024421110133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421110133

Keywords:

Navigation