Skip to main content
Log in

Microstructure and Properties of Cu–Ti Alloys Prepared by Aluminothermic Reaction and Subsequent Rolling

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

By studying the effect of preparation technology and plastic deformation on the microstructure and property evolution of Cu–Ti alloys with a larger composition range, its application scope can be further expanded. In present paper, Cu–Ti alloys with Ti content of 1.0, 4.5 and 10.0 wt % were prepared by aluminothermic reaction and their microstructures and properties were regulated by rolling deformation. The results show that Cu–1.0 wt % Ti alloy is in the solid solution state, Cu–4.5 wt % Ti alloy has a small number of punctate precipitates, and Cu–10.0 wt % Ti alloy has a large number of Cu4Ti precipitate distributed in a network at grain boundaries. For the as-cast Cu–Ti alloys, they consist of a large number of equiaxed micron crystals and a few nanocrystals. With the increase of Ti content, the relative density and grain size of the alloys decrease, the strength and hardness increase, but the elongation and electrical conductivity decrease. Compared with the as-cast alloys, the phase composition of the rolled alloy does not change, but the relative density increases, the grains are elongated along the deformation direction and some grains are crushed into nanocrystals. The precipitated phases are broken and the distribution in the matrix is more uniform and dispersed. For the rolled alloys with the same composition, with the increase of rolling deformation, the strength and hardness increase sharply, but the plasticity decreases significantly, and the electrical conductivity increases slightly at first and then decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. X. Huang, G. Xie, X. Liu, H. Fu, L. Shao, and Z. Hao, “The influence of precipitation transformation on Young’s modulus and strengthening mechanism of a Cu–Be binary alloy,” Mater. Sci. Eng., A 772, 138592 (2020). https://doi.org/10.1016/j.msea.2019.138592

    Article  CAS  Google Scholar 

  2. H. Zhang, Ya. Jiang, J. Xie, Yo. Li, and L. Yue, “Precipitation behavior, microstructure and properties of aged Cu–1.7 wt % Be alloy,” J. Alloys Compd. 773, 1121–1130 (2019). https://doi.org/10.1016/j.jallcom.2018.09.296

    Article  CAS  Google Scholar 

  3. S. Nagarjuna and M. Srinivas, “Grain refinement during high temperature tensile testing of prior cold worked and peak aged Cu–Ti alloys: Evidence of superplasticity,” Mater. Sci. Eng., A 498, 468–474 (2008). https://doi.org/10.1016/j.msea.2008.08.029

    Article  CAS  Google Scholar 

  4. M. Tanahashi, J. Miura, T. Iwadachi, K. Nojiri, T. Fujisawa, and C. Yamauchi, “Oxidation behavior of molten Cu–Be binary and Cu–Be–X (X = Ca or Zr) ternary alloys at 1423 K (1150°C) under controlled oxygen partial pressure,” Metall. Mater. Trans. B 48, 554–563 (2017). https://doi.org/10.1007/s11663-016-0849-9

    Article  CAS  Google Scholar 

  5. L. Huang, Z. Cui, X. Meng, X. Zhang, X. Zhang, X. Song, N. Tang, Z. Xiao, Q. Lei, and Z. Li, “Effects of microelements on the microstructure evolution and properties of ultrahigh strength Cu–Ti alloys,” Mater. Sci. Eng., A 823, 141581 (2021). https://doi.org/10.1016/j.msea.2021.141581

    Article  CAS  Google Scholar 

  6. C. Li, X. Wang, B. Li, J. Shi, Ya. Liu, and P. Xiao, “Effect of cold rolling and aging treatment on the microstructure and properties of Cu–3Ti–2Mg alloy,” J. Alloys Compd. 818, 152915 (2020). https://doi.org/10.1016/j.jallcom.2019.152915

    Article  CAS  Google Scholar 

  7. L. Shen, Z. Li, Q. Dong, Z. Xiao, S. Li, and Q. Lei, “Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment,” J. Mater. Res. 30, 736–744 (2015). https://doi.org/10.1557/jmr.2015.12

    Article  ADS  CAS  Google Scholar 

  8. K. Christofidou, K. Robinson, P. Mignanelli, E. Pickering, N. Jones, and H. Stone, “The effect of heat treatment on precipitation in the Cu–Ni–Al alloy Hiduron® 130,” Mater. Sci. Eng., A 692, 192–198 (2017). https://doi.org/10.1016/j.msea.2017.03.069

    Article  CAS  Google Scholar 

  9. B. Luo, D. Li, C. Zhao, Z. Wang, Z. Luo, and W. Zhang, “A low Sn content Cu–Ni–Sn alloy with high strength and good ductility,” Mater. Sci. Eng., A 746, 154–161 (2019). https://doi.org/10.1016/j.msea.2018.12.120

    Article  CAS  Google Scholar 

  10. Ye. Jiang, Z. Li, Z. Xiao, Ya. Xing, Ya. Zhang, and M. Fang, “Microstructure and properties of a Cu–Ni–Sn alloy treated by two-stage thermomechanical processing,” JOM 71, 2734–2741 (2019). https://doi.org/10.1007/s11837-019-03606-5

    Article  CAS  Google Scholar 

  11. W. A. Soffa and D. E. Laughlin, “High-strength age hardening copper–titanium alloys: Redivivus,” Prog. Mater. Sci. 49, 347–366 (2004). https://doi.org/10.1016/s0079-6425(03)00029-x

    Article  CAS  Google Scholar 

  12. I. S. Batra, A. Laik, G. B. Kale, G. K. Dey, and U. D. Kulkarni, “Microstructure and properties of a Cu–Ti–Co alloy,” Mater. Sci. Eng., A 402, 118–125 (2005). https://doi.org/10.1016/j.msea.2005.04.015

    Article  CAS  Google Scholar 

  13. S. Nagarjuna, “Thermal conductivity of Cu–4.5 Ti alloy,” Bull. Mater. Sci. 27, 69–71 (2004). https://doi.org/10.1007/bf02708488

    Article  CAS  Google Scholar 

  14. S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassab, and R. Kirchheim, “Effects of aging temperature on electrical conductivity and hardness of Cu–3 at pct Ti alloy aged in a hydrogen atmosphere,” Metall. Mater. Trans. A 42, 2136–2143 (2011). https://doi.org/10.1007/s11661-011-0637-8

    Article  CAS  Google Scholar 

  15. S. Nagarjuna and M. Srinivas, “High temperature tensile behaviour of a Cu–1.5 wt % Ti alloy,” Mater. Sci. Eng., A 335, 89–93 (2002). https://doi.org/10.1016/s0921-5093(01)01945-1

    Article  Google Scholar 

  16. S. Semboshi, H. Numakura, W. L. Gao, H. Suda, and A. Sugawara, “Effect of prior cold-working on strength and electrical conductivity of Cu–Ti dilute alloy aged in a hydrogen atmosphere,” Mater. Sci. Forum 654656, 1315–1318 (2010). https://doi.org/10.4028/www.scientific.net/msf.654-656.1315

  17. J. Liu, X. Wang, Q. Ran, G. Zhao, and X. Zhu, “Microstructure and properties of Cu–3Ti–1Ni alloy with aging process,” Trans. Nonferrous Met. Soc. China 26, 3183–3188 (2016). https://doi.org/10.1016/s1003-6326(16)64450-3

    Article  CAS  Google Scholar 

  18. A. Datta and W. A. Soffa, “The structure and properties of age hardened Cu–Ti alloys,” Acta Metall. 24, 987–1001 (1976). https://doi.org/10.1016/0001-6160(76)90129-2

    Article  CAS  Google Scholar 

  19. X. Wang, C. Chen, T. Guo, J. Zou, and X. Yang, “Microstructure and properties of ternary Cu–Ti–Sn alloy,” J. Mater. Eng. Perform. 24, 2738–2743 (2015). https://doi.org/10.1007/s11665-015-1483-4

    Article  CAS  Google Scholar 

  20. K. Koike, K. D. Clarke, and A. J. Clarke, “Microstructural evolution and mechanical properties of heavily cold-rolled and subsequently annealed Cu–3 wt % Ti alloys with nano-lamellar structure,” JOM 71, 4789–4798 (2019). https://doi.org/10.1007/s11837-019-03838-5

    Article  ADS  CAS  Google Scholar 

  21. I. S. Golovin, “Grain-boundary relaxation in copper before and after equal-channel angular pressing and recrystallization,” Phys. Met. Metallogr. 110, 405–413 (2010). https://doi.org/10.1134/s0031918x10100121

    Article  ADS  Google Scholar 

  22. C. J. Barr and K. Xia, “Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures,” J. Mater. Sci. Technol. 82, 57–68 (2021). https://doi.org/10.1016/j.jmst.2020.12.016

    Article  CAS  Google Scholar 

  23. N. Hansen, X. Huang, and D. A. Hughes, “Microstructural evolution and hardening parameters,” Mater. Sci. Eng., A 317, 3–11 (2001). https://doi.org/10.1016/s0921-5093(01)01191-1

    Article  Google Scholar 

  24. Q. Liu, X. Huang, D. J. Lloyd, and N. Hansen, “Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains,” Acta Mater. 50, 3789–3802 (2002). https://doi.org/10.1016/s1359-6454(02)00174-x

    Article  ADS  CAS  Google Scholar 

  25. J. Mei, R. D. Halldearn, and P. Xiao, “Mechanisms of the aluminium-iron oxide thermite reaction,” Scr. Mater. 41, 541–548 (1999). https://doi.org/10.1016/s1359-6462(99)00148-7

    Article  CAS  Google Scholar 

  26. Yu. Zheng, H. Zhao, S. Zhu, P. La, F. Zhan, M. Zhu, J. Sheng, and H. Liu, “Effect of rolling deformation on microstructure and properties of Cu–Ni–Mo alloy prepared by aluminothermic reaction,” Mod. Phys. Lett. B 35, 2150510 (2021). https://doi.org/10.1142/s0217984921505102

    Article  ADS  CAS  Google Scholar 

  27. J. L. Murray, “The Cu−Ti (copper–titanium) system,” Bull. Alloy Phase Diagrams 4, 81–95 (1983). https://doi.org/10.1007/bf02880329

    Article  Google Scholar 

  28. F. Ochoa, J. J. Williams, and N. Chawla, “Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5 wt % Ag solder,” J. Electron. Mater. 32, 1414–1420 (2003). https://doi.org/10.1007/s11664-003-0109-z

    Article  ADS  CAS  Google Scholar 

  29. E. Nes, B. Holmedal, E. Evangelista, and K. Marthinsen, “Modelling grain boundary strengthening in ultra-fine grained aluminum alloys,” Mater. Sci. Eng., A 410411, 178–182 (2005). https://doi.org/10.1016/j.msea.2005.08.121

    Article  CAS  Google Scholar 

  30. L.-J. Hu and Sh.-J. Zhao, “The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes,” J. Mater. Sci. 47, 6872–6881 (2012). https://doi.org/10.1007/s10853-012-6630-9

    Article  ADS  CAS  Google Scholar 

  31. F. O. Sonmez and A. Demir, “Analytical relations between hardness and strain for cold formed parts,” J. Mater. Process. Technol. 186, 163–173 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.031

    Article  CAS  Google Scholar 

  32. A. Yoshie, T. Fujita, M. Fujioka, K. Okamoto, and H. Morikawa, “Formulation of flow stress of Nb added steels by considering work-hardening and dynamic recovery,” ISIJ Int. 36, 467–473 (1996). https://doi.org/10.2355/isijinternational.36.467

    Article  Google Scholar 

  33. L. Qu, E. Wang, K. Han, X. Zuo, L. Zhang, P. Jia, and J. He, “Studies of electrical resistivity of an annealed Cu–Fe composite,” J. Appl. Phys. 113, 173708 (2013). https://doi.org/10.1063/1.4803716

    Article  ADS  CAS  Google Scholar 

  34. M. A. Morris, M. Leboeuf, and D. G. Morris, “Recrystallization mechanisms in a Cu–Cr–Zr alloy with a bimodal distribution of particles,” Mater. Sci. Eng., A 188, 255–265 (1994). https://doi.org/10.1016/0921-5093(94)90380-8

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the supports by the Science and Technology Plan of Gansu Province (grant nos. 18YF1WA069, 21ZD4GA029 and 20JR10RA201), the Key Research Program of Education Department of Gansu Province (grant no. GSSYLXM-03) and the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals (grant no. SKLAB02019010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuehong Zheng or Jie Tang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuehong Zheng, Zhu, S., Gao, H. et al. Microstructure and Properties of Cu–Ti Alloys Prepared by Aluminothermic Reaction and Subsequent Rolling. Phys. Metals Metallogr. 124, 1555–1566 (2023). https://doi.org/10.1134/S0031918X2260155X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2260155X

Keywords:

Navigation