Skip to main content
Log in

Influence of cold deformation and Ti element on the microstructure and properties of Cu–Cr system alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Cu–Cr system alloys with different Ti contents were prepared and processed by deformation and heat treatment. The microstructures, mechanical, and electrical properties were investigated under as-cast and aged conditions. The results indicate that the Cr precipitates present a dispersed distribution and exhibit a face-centered cubic (fcc) structure rather than equilibrium body-centered cubic (bcc) structure in the initial stage of aging. A certain amount of Ti atoms dissolves in matrix due to the large solid solubility, while the remaining atoms segregate around the interface of the Cr precipitates to form a sandwich structure. Improvement of mechanical properties is achieved with Ti addition and the increasing rolling reduction, which can be ascribed to multiple mechanisms. In addition, Ti has a negative effect on the electrical conductivity, while deformation has a slight effect on conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D. Raabe, K. Miyake, and H. Takahara: Processing, microstructure, and properties of ternary high-strength Cu–Cr–Ag in situ composites. Mater. Sci. Eng., A 291, 186 (2000).

    Article  Google Scholar 

  2. K. Maki, Y. Ito, H. Matsunaga, and H. Mori: Solid-solution copper alloys with high strength and high electrical conductivity. Scr. Mater. 68, 777 (2013).

    Article  CAS  Google Scholar 

  3. N. Takata, S.H. Lee, and N. Tsuji: Ultrafine grained copper alloy sheets having both high strength and high electric conductivity. Mater. Lett. 63, 1757 (2009).

    Article  CAS  Google Scholar 

  4. J.H. Su, P. Liu, Q.M. Dong, H.J. Li, and F.Z. Ren: Aging study of rapidly solidified and solid-solution Cu–Cr–Sn–Zn alloy. J. Mater. Process. Technol. 205, 366 (2008).

    Article  CAS  Google Scholar 

  5. J.Q. Deng, X.Q. Zhang, S.Z. Shang, F. Liu, Z.X. Zhao, and Y.F. Ye: Effect of Zr addition on the microstructure and properties of Cu–10Cr in situ composites. Mater. Des. 30, 4444 (2009).

    Article  CAS  Google Scholar 

  6. C.D. Xia, Y.L. Jia, W. Zhang, K. Zhang, Q.Y. Dong, G.Y. Xu, and M.P. Wang: Study of deformation and aging behaviors of a hot rolled–quenched Cu–Cr–Zr–Mg–Si alloy during thermomechanical treatments. Mater. Des. 39, 404 (2012).

    Article  CAS  Google Scholar 

  7. L.P. Deng, K. Han, K.T. Hartwig, T.M. Siegrist, L.Y. Dong, Z.Y. Sun, X.F. Yang, and Q. Liu: Hardness, electrical resistivity, and modeling of in situ Cu–Nb microcomposites. J. Alloys Compd. 602, 331 (2014).

    Article  CAS  Google Scholar 

  8. Q. Lei, Z. Li, J. Wang, J.M. Xie, X. Chen, S. Li, Y. Gao, and L. Li: Hot working behavior of a super high strength Cu–Ni–Si alloy. Mater. Des. 51, 1104 (2013).

    Article  CAS  Google Scholar 

  9. J.H. Su, P. Liu, H. Li, F.Z. Ren, and Q.M. Dong: Phase transformation in Cu–Cr–Zr–Mg alloy. Mater. Lett. 61, 4963 (2007).

    Article  CAS  Google Scholar 

  10. Z.P. Que, J.H. Lee, H.M. Jung, J.H. Shin, S.Z. Han, and K.J. Euh: Microstructure evolution in Cu–1.54wt% Cr alloy during directional solidification. J. Cryst. Growth 362, 58 (2013).

    Article  CAS  Google Scholar 

  11. Y. Pang, C.D. Xia, M.P. Wang, Z. Li, Z. Xiao, H.G. Wei, X.F. Sheng, Y.L. Jia, and C. Chen: Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu–Cr alloy. J. Alloys Compd. 582, 786 (2014).

    Article  CAS  Google Scholar 

  12. C. Watanabe, R. Monzen, and K. Tazaki: Mechanical properties of Cu-Cr system alloys with and without Zr and Ag. J. Mater. Sci. 43, 813 (2008).

    Article  CAS  Google Scholar 

  13. J.H. Su, Q.M. Dong, P. Liu, H.J. Li, and B.X. Kang: Research on aging precipitation in a Cu–Cr–Zr–Mg alloy. Mater. Sci. Eng., A 392, 422 (2005).

    Article  Google Scholar 

  14. A. Nagesha, P. Parameswaran, A. Biswas, R. Sandhya, A.K. Asraff, and M.D. Mathew: Microstructural investigations into the low cycle fatigue deformation of a Cu–Cr–Zr–Ti alloy. Mater. Sci. Eng., A 582, 91 (2013).

    Article  CAS  Google Scholar 

  15. Y.H. Wang, X.P. Song, Z.B. Sun, X. Zhou, and J. Guo: Effects of Ti addition on microstructures of melt-spun CuCr ribbons. Trans. Nonferrous Met. Soc. China 17, 72 (2007).

    Article  CAS  Google Scholar 

  16. K.X. Wei, W. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, and J. Hu: Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5%Cr alloy processed by severe plastic deformation. Mater. Sci. Eng., A 528, 1478 (2011).

    Article  Google Scholar 

  17. C.D. Xia, W. Zhang, Z.Y. Kang, Y.L. Jia, Y.F. Wu, R. Zhang, G.Y. Xu, and M.P. Wang: High strength and high electrical conductivity Cu–Cr system alloys manufactured by hot rolling–quenching process and thermomechanical treatments. Mater. Sci. Eng., A 538, 295 (2012).

    Article  CAS  Google Scholar 

  18. N.K. Tewary, S.K. Ghosh, S. Bera, D. Chakrabarti, and S. Chatterjee: Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel. Mater. Sci. Eng., A 615, 405 (2014).

    Article  CAS  Google Scholar 

  19. S.H. Huh, H.K. Kim, J.W. Park, and G.H. Lee: Critical cluster size of metallic Cr and Mo nanoclusters. Phys. Rev. B. 62, 2937 (2000).

    Article  CAS  Google Scholar 

  20. M. Hatakeyama, T. Toyama, J. Yang, Y. Nagai, M. Hasegawa, T. Ohkubo, M. Eldrup, and B.N. Singh: 3D-AP and positron annihilation study of precipitation behavior in Cu–Cr–Zr alloy. J. Nucl. Mater. 386–388, 852 (2009).

    Article  Google Scholar 

  21. J.J. Hoyt: On the coarsening of precipitates located on grain boundaries and dislocations. Acta Metall. Mater. 39, 2091 (1991).

    Article  CAS  Google Scholar 

  22. J.E. Bailey and P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold worked polycrystalline silver. Philos. Mag. 5, 485 (1960).

    Article  CAS  Google Scholar 

  23. L. Gao, R.S. Chen, and E.H. Han: Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481, 379 (2009).

    Article  CAS  Google Scholar 

  24. B. Sun, S. Li, H. Imai, T. Mimoto, J. Umeda, and K. Kondoh: Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods. Mater. Sci. Eng., A 563, 95 (2013).

    Article  CAS  Google Scholar 

  25. D.L. Ellis and G.M. Michal: Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. NASA Contractor Reports Server. 185144, (1989).

  26. R.L. Fleischer: Solution hardening by tetragonal distortions: Application to irradiation hardening in F.C.C. crystals. Acta Metall. 10, 835 (1962).

    Article  CAS  Google Scholar 

  27. L. Qu, E.G. Wang, K. Han, X.W. Zuo, L. Zhang, P. Jia, and J.C. He: Studies of electrical resistivity of an annealed Cu-Fe composite. J. Appl. Phys. 113, 173708 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Natural Science Foundation of China (Nos. 51134013, 51271042) and the Fundamental Research Funds for the Central Universities of China (DUT14RC(4)13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinchuan Jie or Tongmin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Jie, J., Gao, Y. et al. Influence of cold deformation and Ti element on the microstructure and properties of Cu–Cr system alloys. Journal of Materials Research 30, 2073–2080 (2015). https://doi.org/10.1557/jmr.2015.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.143

Navigation