Skip to main content

Advertisement

Log in

The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New generation of lightweight structures and technologies enables the development of materials to exhibit superior property combinations. In the present work, cellular automata is used to address the problem of dislocation behaviour and 4 factors: (i) a high density of dislocations, (ii) sub-nanometre intragranular solute clusters, (iii) 2 geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter featuring in aluminium alloys containing a nanostructural hierarchy and exhibiting record strength with good ductility—an aerospace grade 7075 alloy exhibits a yield strength of 1 GPa and total elongation to failure of 9 %. We show that the clusters and geometries of nanometre-scale intergranular solute structures govern the strength of such material, resulting in their increasing elongation. Our results demonstrate that this simulation explains the phenomena of the super-strong materials of new generation with entirely new regimes of property-performance space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Valiev RZ (2007) J Mater Sci 42:1483. doi:10.1007/s10853-006-1281-3

    Article  CAS  Google Scholar 

  3. Liu M, Roven HJ, Liu X, Murashkin M, Valiev RZ, Ungár T, Balogh L (2010) J Mater Sci 45:4659. doi:10.1007/s10853-010-4604-3

    Article  CAS  Google Scholar 

  4. Hassani FZ, Ketabchi M, Hassani MT (2011) J Mater Sci 46:7689. doi:10.1007/s10853-011-5748-5

    Article  CAS  Google Scholar 

  5. Murashkin M, Kil’mametov AR, Valiev RZ (2008) Phys Metal Metal 106:90

    Article  Google Scholar 

  6. Liddicoat PV, Liao XZ, Zhao YH, Zhu YT, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nature Commun 1:1

    Article  Google Scholar 

  7. Hall EO (1951) Proc Phys Soc Lond B 64:747

    Article  Google Scholar 

  8. Friedel J (1967) Dislocation. Pergamon, Oxford

    Google Scholar 

  9. Hirth J, Lothe J (1992) Theory of dislocations. Krieger, Malabar

    Google Scholar 

  10. Tjong SC, Chen H (2004) Mater Sci Eng R 45:1

    Article  Google Scholar 

  11. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  12. Karch J, Birringer R, Gleiter H (1987) Nature 330:556

    Article  CAS  Google Scholar 

  13. McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK (1999) Nature 398:684

    Article  CAS  Google Scholar 

  14. Kim BN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288

    Article  CAS  Google Scholar 

  15. Siegel RW (1997) Mater Sci Forum 235–238:851

    Article  Google Scholar 

  16. Morris DG, Morris MA (1997) Mater Sci Forum 235–238:861

    Article  Google Scholar 

  17. Nesladek P, Veprek S (2000) Phys Status Solidi A 177:53

    Article  Google Scholar 

  18. Valiev RZ, Murashkin MY, Kilmametov A, Straumal B, Chinh NQ, Langdon TG (2010) J Mater Sci 45:4718. doi:10.1007/s10853-010-4588-z

    Article  CAS  Google Scholar 

  19. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Nature Mater 1:45

    Article  CAS  Google Scholar 

  20. Gerlich AP, Yue L, Mendez PF, Zhang H (2010) Acta Mater 58:2176

    Article  CAS  Google Scholar 

  21. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 30:654

    Article  Google Scholar 

  22. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  23. Zhang H, Srolovitz DJ, Douglas JF, Warren JA (2009) PNAS 106:7735

    Article  CAS  Google Scholar 

  24. Van Swygenhoven H, Derlet PM, Frøseth AG (2006) Acta Mater 54:1975

    Article  Google Scholar 

  25. Bobylev SV, Mukherjee AK, Ovid’ko IA (2009) Scripta Mater 60:36

    Article  CAS  Google Scholar 

  26. Ni S, Wang YB, Liao XZ, Alhajeri SN, Li HQ, Zhao YH, Lavernia EJ, Ringer SP, Langdon TG, Zhu YT (2011) Scripta Mater 64:327

    Article  CAS  Google Scholar 

  27. Nabarro FRN (2006) Acta Mater 54:263

    Article  CAS  Google Scholar 

  28. Fan GJ, Choo H, Liawa PK, Lavernia EJ (2005) Mater Sci Eng A 409:243

    Article  Google Scholar 

  29. Keblinski P, Phillpot SR, Wolf D, Gleiter H (1997) Acta Mater 45:987

    Article  CAS  Google Scholar 

  30. Keblinski P, Wolf D, Phillpot SR, Gleiter H (1999) Scripta Mater 41:631

    Article  CAS  Google Scholar 

  31. Nagamanasa KH, Gokhale S, Ganapathy R, Sood AK (2011) Proc Natl Acad Sci USA 108:11323

    Article  CAS  Google Scholar 

  32. Cheng JB, Liang XB, Xu BS, Wu YX (2009) J Non-Cryst Solids 355:1673

    Article  CAS  Google Scholar 

  33. Zhang JZ, Zhao YS (2004) Nature 430:332

    Article  CAS  Google Scholar 

  34. Furuichi H, Ito E, Kanno Y, Watanabe S, Katsura T, Fujii N (2001) J Non-Cryst Solids 279:215

    Article  CAS  Google Scholar 

  35. Soler JM, Beltrán MR, Michaelian K, Garzón IL, Ordejón P, Sánchez-Portal D, Artacho E (2000) Phys Rev B 61:5771

    Article  CAS  Google Scholar 

  36. de la Fuente OR, Soler JM (1998) Phys Rev Lett 81:3159

    Article  Google Scholar 

  37. Ophus C, Luber EJ, Edelen M, Lee Z, Fischer LM, Evoy S, Lewis D, Dahmen U, Radmilovic V, Mitlin D (2009) Acta Mater 57:4296

    Article  CAS  Google Scholar 

  38. Trelewicz JR, Schuh CA (2007) Acta Mater 55:5948

    Article  CAS  Google Scholar 

  39. Schuh CA, Nieh TG, Iwasaki H (2003) Acta Mater 51:431

    Article  CAS  Google Scholar 

  40. He JH, Sheng HW, Schilling PJ, Chien C-L, Ma E (2001) Phys Rev Lett 86:2826

    Article  CAS  Google Scholar 

  41. Van Swygenhoven H, Caro A (1998) Phys Rev B 58:11246

    Article  Google Scholar 

  42. Maxwell JC (1867) Philos Trans R Soc Lon 157:49

    Article  Google Scholar 

  43. Nitta KH, Suzuki K (1999) Macromol Theory Simul 8:254

    Article  CAS  Google Scholar 

  44. Casula G, Carcione JM (1992) Boll Geofis Teor Appl 34:235

    Google Scholar 

  45. Fan GJ, Choo H, Liaw PK, Lavernia EJ (2005) Metall Mater Trans A 36:2641

    Article  Google Scholar 

  46. Frøseth A, Van Swygenhoven H, Derlet PM (2004) Acta Mater 52:2259

    Article  Google Scholar 

  47. Li XY, Wei YJ, Lu L, Lu K, Gao HJ (2010) Nature 464:877

    Article  CAS  Google Scholar 

  48. Daehn GS (2001) Acta Mater 49:2017

    Article  CAS  Google Scholar 

  49. Radmilovic V, Miller MK, Mitlin D, Dahmen U (2006) Script Mater 54:1973

    Article  CAS  Google Scholar 

  50. Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  51. Li H, Ebrahimi F, Choo H, Liaw PK (2006) J Mater Sci 41:7636. doi:10.1007/s10853-006-0856-3

    Article  CAS  Google Scholar 

  52. Voyiadjis GZ, Deliktas B (2010) Acta Mech 213:3

    Article  Google Scholar 

  53. Horstemeyer MF, Baskes MI, Plimpton SJ (2004) Acta Mater 49:4363

    Article  Google Scholar 

Download references

Acknowledgement

The supports of the Key Project of Natural Science Foundation of China Grant No. 50931003, the Shanghai Committee of Science and Technology Grants No. 09520500100 and 10PJ1403900, the Key Project of Innovation Program of Shanghai Municipal Education Commission Grant No. 10ZZ62, and Shu Guang Project Grant No. 09SG36 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, LJ., Zhao, SJ. The effect of nanostructural hierarchy on the mechanical properties of aluminium alloys during deformation processes. J Mater Sci 47, 6872–6881 (2012). https://doi.org/10.1007/s10853-012-6630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6630-9

Keywords

Navigation