Skip to main content
Log in

Microstructure and Properties of a Cu-Ni-Sn Alloy Treated by Two-Stage Thermomechanical Processing

  • Precipitation Mechanisms in Non-ferrous Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of two-stage thermomechanical processing on the microstructure and properties of Cu-15Ni-8Sn-1.0Zn-0.5Al-0.2Si alloy have been investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and mechanical and electrical property testing. Spinodal decomposition and β-Ni3Sn precipitates with L12 ordering structure appeared in the preaged alloy. The crystal orientation relationships between the copper matrix and β-Ni3Sn precipitates were (200)Cu||(100)β, [001]Cu||[001]β and (\( \bar{2}20 \))Cu||(\( \bar{1}10 \))β, [112]Cu||[112]β. The high strength of the studied alloy can mainly be attributed to the combined effects of precipitation strengthening and substructure strengthening. The interaction between the nascent nanoparticles that form during pre-aging and the dislocation configurations that form during cold rolling promotes precipitation in the matrix and suppresses formation of cellular precipitates and coarse precipitates at grain boundaries, improving the comprehensive properties of the alloy. The peak-aged alloy treated with two-stage thermomechanical processing showed hardness of 387 HV, electrical conductivity of 8.5%IACS, tensile strength of 1176 MPa, yield strength of 1106 MPa, elongation of 3.86%, and strength–ductility product of 4539 MPa%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.R. Scorey, S. Chin, M.J. White, and R.J. Livak, JOM 36, 52 (1984).

    Article  Google Scholar 

  2. S. Zhang, B. Jiang, and W. Ding, Tribol. Int. 43, 64 (2010).

    Article  Google Scholar 

  3. Y. Zhang, Z. Xiao, Y. Zhao, Z. Li, Y. Xing, and K. Zhou, Mater. Chem. Phys. 199, 54 (2017).

    Article  Google Scholar 

  4. Z. Li, Q. Lei, S. Li, L. Shen, and S. Li, Mater. Rev. 29, 1 (2015).

    Google Scholar 

  5. B. Luo, D. Li, C. Zhao, Z. Wang, Z. Luo, and W. Zhang, Mater. Sci. Eng. A 746, 154 (2019).

    Article  Google Scholar 

  6. C. Wang, X. Liu, Y. Ma, I. Ohnuma, R. Kainuma, and K. Ishida, Chin. J. Nonferrous Met. 15, 1148 (2005).

    Google Scholar 

  7. L. Deyong, R. Tremblay, and R. Angers, Mater. Sci. Eng. A 124, 223 (1990).

    Article  Google Scholar 

  8. J. Caris, R. Varadarajan, J.J. Stephens, and J.J. Lewandowski, Mater. Sci. Eng. A 491, 137 (2008).

    Article  Google Scholar 

  9. J. Caris, D. Li, J.J. Stephens, and J.J. Lewandowski, Mater. Sci. Eng. A 527, 769 (2010).

    Article  Google Scholar 

  10. G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta Mater. 83, 357 (2015).

    Article  Google Scholar 

  11. J.C. Rhu, S.S. Kim, S.Z. Han, Y.C. Jung, and C.J. Kim, Scr. Mater. 42, 83 (1999).

    Article  Google Scholar 

  12. S. Han, K. Sohn, C. Kim, and S. Kim, Metall. Mater. Trans. A 35, 465 (2004).

    Article  Google Scholar 

  13. M. Miki and Y. Ogino, Mater. Trans. 31, 968 (1990).

    Article  Google Scholar 

  14. R.K. Ray and S.C. Narayanan, Metall. Trans. A 13, 565 (1982).

    Article  Google Scholar 

  15. R.J. Moffat, Exp. Therm. Fluid Sci. 1, 3 (1981).

    Article  Google Scholar 

  16. Z. Guo, J. Jie, S. Liu, Y. Zhang, B. Qin, T. Wang, and T. Li, Mater. Sci. Eng. A 748, 85 (2019).

    Article  Google Scholar 

  17. S. Liu, M. Wang, Z. Li, M. Guo, and Y. Wang, Min. Metall. Eng. 25, 73 (2005).

    Google Scholar 

  18. J.C. Zhao and M.R. Notis, Scr. Mater. 39, 1509 (1998).

    Article  Google Scholar 

  19. J.C. Zhao and M.R. Notis, Acta Mater. 46, 4203 (1998).

    Article  Google Scholar 

  20. P. Hermann and D.G. Morris, Metall. Mater. Trans. A 25, 1402 (1994).

    Article  Google Scholar 

  21. Y. Ouyang, X. Gan, Z. Li, K. Zhou, S. Zhang, Y. Jiang, and X. Zhang, Mater. Sci. Eng. A 704, 128 (2017).

    Article  Google Scholar 

  22. W.S. Jeon, C.C. Shur, J.G. Kim, S.Z. Han, and Y.S. Kim, J. Alloys Compd. 455, 358 (2008).

    Article  Google Scholar 

  23. M. Miki and Y. Ogino, Mater. Trans. JIM 35, 313 (1994).

    Article  Google Scholar 

  24. C. Zhao, W. Zhang, Z. Wang, D. Li, Z. Luo, C. Yang, and D. Zhang, Materials 10, 1038 (2017).

    Article  Google Scholar 

  25. J.T. Plewes, Metall. Mater. Trans. A 6A, 537 (1975).

    Article  Google Scholar 

  26. Y.H. Wang, M.P. Wang, and B. Hong, Trans. Mater. Heat Treat. 25, 97 (2004).

    Google Scholar 

  27. C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr, Acta Mater. 59, 934 (2011).

    Article  Google Scholar 

  28. D.W. Zhang, D.M. Zhao, and Q.M. Dong, J. Funct. Mater. 35, 2160 (2004).

    Google Scholar 

  29. S.M. Hao, X.J. Hao, G. Zhao, and H.X. Li, Acta Metall. Sin. 12, 322 (1999).

    Google Scholar 

  30. Z.T. Wang and R.Z. Tian, The Process Handbook of Copper Alloys, 1st ed. (Changsha: Central South University Press, 2002), p. 323.

    Google Scholar 

  31. L. Shen, Z. Li, Q. Dong, Z. Xiao, and C. Chen, J. Mater. Res. 31, 1113 (2016).

    Article  Google Scholar 

  32. J. Huang, Z. Xiao, J. Dai, Z. Li, H. Jiang, W. Wang, and X. Zhang, Mater. Sci. Eng. A 744, 754 (2019).

    Article  Google Scholar 

  33. Q. Lei, Z. Xiao, W. Hu, B. Derby, and Z. Li, Mater. Sci. Eng. A 697, 37 (2017).

    Article  Google Scholar 

  34. S. Li, Z. Li, Z. Xiao, S. Li, L. Shen, and Q. Dong, Mater. Sci. Eng. A 650, 345 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key Research and Development Program of China (2017YFB0306100), National Natural Science Foundation of China (Grant Nos. U1637210 and 51601227), and Grants from the Project of State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, Z., Xiao, Z. et al. Microstructure and Properties of a Cu-Ni-Sn Alloy Treated by Two-Stage Thermomechanical Processing. JOM 71, 2734–2741 (2019). https://doi.org/10.1007/s11837-019-03606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03606-5

Navigation