Skip to main content
Log in

Composition dependences of thermodynamical properties associated with Pb-free ternary, quaternary, and quinary solder systems

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In the present study, Chou’s General Solution Model (GSM) has been used to predict the enthalpy and partial enthalpies of mixing of the liquid Ag–In–Sn ternary, Ag–In–Sn–Zn quaternary, and Ag–Au–In–Sn–Zn quinary systems. These are of technical importance to optimize lead-free solder alloys, in selected cross-sections: x In/x Sn = 0.5/0.5 (ternary), Au–In0.1–Sn0.8–Zn0.1, Ag–In0.1–Sn0.8–Zn0.1 (quaternary), and t = x Au/x In = 1, x In = x Sn = x Zn (quinary) at 1173, 773, and 773 K, respectively. Moreover, the activity of In content in the ternary alloy system Ag–In–Sn has been calculated and its result is compared with that determined from the experiment, while the activities of Ag contents associated with the alloys mentioned above have been calculated. The other traditional models such as of Colinet, Kohler, Muggianu, Toop, and Hillert are also included in calculations. Comparing those calculated from the proposed GSM with those determined from experimental measurements, it is seen that this model becomes considerably realistic in computerization for estimating thermodynamic properties in multicomponent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly,” Int. Mater. Rev. 40 (2), 65–93 (1995).

    Article  Google Scholar 

  2. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics,” Mater. Sci. Eng. R 27, 95–141 (2000).

    Article  Google Scholar 

  3. K. Suganuma, “Advances in lead-free electronics soldering,” Current Opinion in Solid State Mater. Sci. 5, 55–64 (2001).

    Article  Google Scholar 

  4. J. Vizdal, M. H. Braga, A. Kroupa, K. W. Richter, D. Soares, L. F. Malheiros, and J. Ferreira, “Thermodynamic assessment of the Bi–Sn–Zn system,” Calphad 31, 438–448 (2007).

    Article  Google Scholar 

  5. K. Suganuma, S.-J. Kim, and K.-S. Kim, “High-temperature lead-free solders: Properties and Possibilities,” JOM 61 (1), 64–71 (2009).

    Article  Google Scholar 

  6. M. McCormack and S. Jin, “Lead-Free Solders,” J. Electron. Mater. 23, 635–640 (1994).

    Article  Google Scholar 

  7. M. McCormack and S. Jin, “Improved mechanical properties in new lead-free solder alloys,” J. Electron. Mater. 23, 715–720 (1994).

    Article  Google Scholar 

  8. T. Miki, N. Ogava, T. Nagasaka, and M. Hino, “Activity measurement of the constituents in molten Ag–In–Sn ternary alloy by mass spectrometry,” Mater. Trans. 42, 732–738 (2001).

    Article  Google Scholar 

  9. X. J. Liu, Y. Inohana, Z. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Pstrus, “Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn–Ag–In system,” J. Electron. Mater. 31 1139–1151 (2002).

    Article  Google Scholar 

  10. C. Luef, H. Flandorfer, and H. Ipser, “Lead-free solder materials: Experimental enthalpies of mixing of liquid Ag–In–Pd–Sn alloys,” Metall. Mater. Trans. A 36, 1273–1277 (2005).

    Article  Google Scholar 

  11. W. Gierlotka, “Thermodynamic description of the quaternary Ag–Cu–In–Sn system,” J. Electron. Mater. 41, 86–108 (2012).

    Article  Google Scholar 

  12. W. Oelsen and P. Zühlke, “Zur thermodynamischen Analyse VIII,” Arch. Eisenhüttenwes. 27, 743–754 (1956).

    Google Scholar 

  13. O. J. Kleppa, “Thermodynamic analysis of binary liquid alloys of group II B metals. I. The systems zinc–cadmium, zinc–gallium, zinc–indium and zinc–tin,” Acta Metall. 6, 225–232 (1958).

    Article  Google Scholar 

  14. F. E. Wittig and E. Müller, “The heats of mixing of the binary liquid systems of zinc and cadmium with indium and thallium,” Z. Metallkd. 51, 226–238 (1960).

    Google Scholar 

  15. W. J. Svirbely and S. M. Selis, “A thermodynamic study of the zinc–indium system,” J. Am. Chem. Soc. 75, 1532–1535 (1953).

    Article  Google Scholar 

  16. R. W. Bohl and V. D. Hildebrandt, “Electrode potential studies of liquid–solid equilibrium in Zn–Cd and Zn–In alloys,” J. Am. Chem. Soc. 79, 2711–2717 (1957).

    Article  Google Scholar 

  17. Z. Moser, “Determination of the thermodynamic properties in Zn–In liquid solutions,” Rev. Rom. Chim. 16, 327–341 (1971).

    Google Scholar 

  18. O. J. Kleppa, “A thermodynamic study of liquid metallic solutions. VI. Calorimetric investigations of the systems bismuth–lead, cadmium–lead, cadmium–tin and tin–zinc,” J. Phys. Chem. 59, 354–361 (1955).

    Article  Google Scholar 

  19. W. Oelsen, “Zur Kalorimetrie und Thermodynamik der Zinn–Zink-Legierungen,” Z. Metallkd. 48, 1–8 (1957).

    Google Scholar 

  20. E. Schürmann and H. Träger, “Die Empfindlichkeit und die Wiederholbarkeit von Messungen mit dem Kleinkalorimeter (The sensitivity and reproducibility of measurements with microcalorimeter),” Arch. Eisenhüttenwes. 32, 397–408 (1961).

    Google Scholar 

  21. Z. Moser, K. Rzyman, and S. Randzio, “Calorimetric studies on Zn–Sn liquid solutions,” Bull. Acad. Pol. Sci. Tech. 35, 461–464 (1987).

    Google Scholar 

  22. M. Genot and R. Hagege, “Etude thermodynamique du systeme etainzinc,” Compt. Rend. Acad. Sci. Fr. 25, 2901–2903 (1960).

    Google Scholar 

  23. Z. Qiao, X. Xing, and S. Duan, “A model for predicting ternary thermodynamic properties of solution phase and its appliciation,” J. Mater. Sci. Technol. 9, 199–204 (1993).

    Google Scholar 

  24. A. Boulouiz and A. Sabbar, “Pb-free solders: Experimental and calculated enthalpy of mixing of the liquid Au–In–Sn–Zn quaternary system,” Thermochim. Acta 575, 151–158 (2014).

    Article  Google Scholar 

  25. M. Hillert, “Empirical methods of predicting and representing thermodynamic properties of ternary solution phases,” Calphad 4, 1–12 (1980).

    Article  Google Scholar 

  26. F. Kohler, “Zur Berechnung der thermodynamischen Daten eines ternaren Systems aus dem zugehörigen binären Systemen,” Monatsh. Chem. 91, 738–740 (1960).

    Article  Google Scholar 

  27. Y. M. Muggianu, M. Gambino, and J. P. Bros, “Enthalpies of formation of liquid alloys,” J. Chim. Phys. 72, 83–88 (1975).

    Google Scholar 

  28. G. W. Toop, “Predicting ternary activities using binary data,” Trans. AIME 233, 850–855 (1965).

    Google Scholar 

  29. K. C. Chou, “A general solution model for predicting ternary thermodynamic properties,” Calphad 19, 315–325 (1995).

    Article  Google Scholar 

  30. C. Colinet, Ph. D. Thesis, Faculte des Sciences, Universite de Grenoble (1967).

    Google Scholar 

  31. J. Wang, P. Hudon, D. Kevorkov, P. Chartrand, In-Ho Jung, M. Medraj, “Thermodynamic and experimental study of the Mg–Sn–Ag–In quaternary system,” J. Phase Equilib. Diffus. 35, 284–313 (2014).

    Article  Google Scholar 

  32. M. El. Maniani and A. Sabbar, “Partial and integral enthalpies of mixing in the liquid Ag–In–Sn–Zn quaternary alloys,” Thermochim. Acta 592, 1–9 (2014).

    Article  Google Scholar 

  33. G. H. Zhang, L. J. Wang, and K. C. Chou, “A comparison of different geometrical models in calculating physicochemical properties of quaternary systems,” Calphad 34, 504–509 (2010).

    Article  Google Scholar 

  34. K. C. Chou and S. K. Wei, “A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries,” Metal. Mater. Trans. B 28, 439–445 (1997).

    Article  Google Scholar 

  35. H. Arslan, “Analytical determination of partial and integral properties of the six components systems Ni–Cr–Co–Al–Mo–Ti and their subsystems,” Physica B 438, 48–52 (2014).

    Article  Google Scholar 

  36. H. Arslan, A. Dogan, and T. Dogan, “An analytical approach for thermodynamic properties of the sixcomponent systems Ni–Cr–Co–Al–Mo–Ti and its subsystems,” Phys. Met.Metallogr. 114, 1053–1060 (2013).

    Article  Google Scholar 

  37. R. Tang, E. J. Qurelid, G. Tranell, and M. Tangstad, “Thermodynamic database for the solar cell silicon materials,” Mater. Trans. 50, 1978–1984 (2009).

    Article  Google Scholar 

  38. S. Hassam, D. Boa, P. Benigni, and R. Rogez, “Critical assessment and optimization of the Ag–Au–Pb system,” Thermochim. Acta 510, 37–45 (2010).

    Article  Google Scholar 

  39. H. Flandorfer, C. Luef, and U. Saeed, “On the temperature dependence of the enthalpies of mixing in liquid binary (Ag, Cu, Ni)–Sn alloys,” J. Non-Crystal. Solids 354, 2953–2972 (2008).

    Article  Google Scholar 

  40. G.-T. Acebo, “Thermodynamic assessment of the Ag-Zn system,” Calphad 22, 203–220 (1988).

    Article  Google Scholar 

  41. S. Hassam, D. Boa, and J. Rogez, “Calorimetric investigations of Au–In, In–Sb and Au–In–Sb systems at 973 K,” J. Alloys Compd. 520, 65–71 (2012).

    Article  Google Scholar 

  42. S. Knott, Z. Li, and A. Mikula, “Integral enthalpy of mixing of the liquid ternary Au–Cu–Sn system,” Thermochim. Acta 470, 12–17 (2008).

    Article  Google Scholar 

  43. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. Kelly, The Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).

    Google Scholar 

  44. C. Luef, H. Flandorfer, and H. Ipser, “Enthalpies of mixing of liquid alloys in the In–Pd–Sn system and the limiting binary systems,” Thermochim. Acta 417, 47–57 (2004).

    Article  Google Scholar 

  45. M. Rechchach, A. Sabbar, H. Flandorfer, and H. Ipser, “Enthalpies of mixing of liquid In–Sn, In–Sn–Zn alloys,” Thermochim. Acta 502, 66–72 (2010).

    Article  Google Scholar 

  46. O. J. Kleppa, “Aspects of the thermodynamics of metallic solutions,” J. Phys. Rad. 23, 763–772 (1962).

    Article  Google Scholar 

  47. Z. Guo, H. Hindler, W. Yuan, and A. Mikula, “Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements,” Thermochim. Acta 525, 183–189 (2011).

    Article  Google Scholar 

  48. J. Wang, C. Leinenbach, and M. Roth, “Thermodynamic modeling of the Au–Ge–Sn ternary system,” J. Alloys Compd. 481, 830–836 (2009).

    Article  Google Scholar 

  49. H. S. Liu, C. L. Liu, K. Ishida, and Z. P. Jin, “Thermodynamic modeling of the Au–In–Sn system,” J. Electron. Mater. 32, 1290–1296 (2003).

    Article  Google Scholar 

  50. H. S. Liu, K. Ishida, K. Jin, and Y. Du, Thermodynamic assessment of the Au–Zn system,” Intermetallics 11, 987–994 (2003).

    Article  Google Scholar 

  51. D. Jendrzejczyk and K. Fitzner, “Thermodynamic properties of liquid silver–indium alloys determined from EMF measurements,” Thermochim. Acta 433, 66–71 (2005).

    Article  Google Scholar 

  52. E. Prezdziecka-Mycielska, J. Terpilowski, and K. Strozecka, “Thermodynamic properties of liquid metallic solutions. XI. The Ag–In system,” Arch. Hutnictwa 2, 85–101 (1963).

    Google Scholar 

  53. T. Nozaki, M. Shimoji, and K. Niwa, “Thermodynamic studies on liquid silver–indium alloys,” Trans. Jpn. Inst. Met. 7, 52–55 (1966).

    Article  Google Scholar 

  54. C. B. Alcock, R. Sridhar, and R. C. Svedberg, “A mass spectrometric study of the binary liquid alloys Ag–In and Cu–Sn, Acta Metall. 17, 839–844 (1969).

    Article  Google Scholar 

  55. G. J. Qi, H. Mitsuhisa, and A. Takeshi, “Thermodynamic study of liquid silver–indium and silver–gallium alloys with a Knudsen cell–mass spectrometer,” Mater. Trans. JIM 30, 575–582 (1989).

    Article  Google Scholar 

  56. K. Kameda, Y. Yoshida, and S. Sakairi, “Activities of liquid silver–indium alloys by EMF measurements using zirconia solid and fused salt electrolytes,” Trans. Jpn. Inst. Met. 45, 614–620 (1981).

    Google Scholar 

  57. D. B. Masson and S. S. Pradhan, “Measurement of vapor pressure of indium over a Ag–In using atomic absorption,” Metall. Mater. Trans. A 4, 991–995 (1996).

    Google Scholar 

  58. B. J. Lee, C. S. Oh, and J. H. Shim, “Thermodynamic assessments of the Sn–In and SnBi binary systems,” J. Electron. Mater. 25, 983–991 (1973).

    Article  Google Scholar 

  59. N. Moelans, K. C. Hari Kumar, and P. Wollants, “Thermodynamic optimization of the lead-free solder system Bi–In–Sn–Zn,” J. Alloy. Compd. 360, 98–106 (2003).

    Article  Google Scholar 

  60. R. O. Frantik and H. J. McDonald, “Thermodynamic study of the tin–silver system,” Trans. Electrochem. Soc. 88, 253–262 (1945).

    Article  Google Scholar 

  61. T. Nozaki, M. Shimoji, and K. Niwa, “Thermodynamic properties of Ag–Sn and Ag–Sb liquid alloys,” Ber. Bund. Gesellsch. 70, 207–241 (1966).

    Google Scholar 

  62. P. J. R. Chowdhury and A. Ghosh, “Thermodynamic measurements in liquid Sn–Ag alloys,” Metall. Trans. 2, 2171–2174 (1971).

    Article  Google Scholar 

  63. K. Okajima and H. Sakao, “TIE measurements on the activities of the silver–antimony, silver–lead and silver–tin molten alloys,” Trans. JIM 15, 52–56 (1974).

    Google Scholar 

  64. M. Iwase, M. O. Yasuda, and S. I. Miki, “A thermodynamic study of liquid Ag–Sn alloys by means of solidoxide galvanic cell,” Trans. JIM 19, 654–660 (1978).

    Google Scholar 

  65. G. H. Laurie, A. H. Morris, and J. N. Pratt, “Electromotive force and calorimetric studies of thermodynamic properties of solid and liquid Ag–Sn alloys,” Trans. Metall. Soc. AIME 236, 1390–1395 (1966).

    Google Scholar 

  66. T. Yamaji and E. Kato, “Mass spectrometric study of the thermodynamic properties of the Ag–Sn system,” Metall. Mater. Trans. B 3, 1002–1004 (1972).

    Article  Google Scholar 

  67. L. Bencze and A. Popovic, “Knudsen effusion mass spectrometric determination of mixing thermodynamic data of liquid Ag–In–Sn alloy,” Int. J. Mass. Spectrom. 270, 139–155 (2008).

    Article  Google Scholar 

  68. D. Jendrzejczyk, W. Gierlotka, and K. Fitzner, “Thermodynamic properties of liquid copper–indium–tin alloys determined from EMF measurements,” J. Chem. Therm. 41, 250–256 (2009).

    Article  Google Scholar 

  69. H. Arslan and A. Dogan, “An analytical investigation for thermodynamic properties of the Fe–Cr–Ni–Mg–O system,” Russ. J. Phys. Chem. A 89, 180–189 (2015).

    Article  Google Scholar 

  70. T. Lauril, V. Vuorinen, and J. K. Kivialahti, “Interfacial reactions between lead-free solders and common base materials,” Mater. Sci. Eng., R: Reports 49, 1–60 (2005).

    Article  Google Scholar 

  71. Y. T. Huang and T. H. Chuang, “Interfacial reactions between liquid In–49Sn solders and Ag substrates,” Z. Metallkd. 12, 1002–1005 (2000).

    Google Scholar 

  72. M. D. Cheng, S. S. Wang, and T. H. Chuang, “Soldering reactions between In49Sn and Ag thick films,” J. Electron. Mater. 31, 171–177 (2002).

    Article  Google Scholar 

  73. I. I. Gorbachev and V. V. Popov, “Thermodynamic simulation of the Fe–V–Nb–C–N system using the CALPHAD method,” Phys. Met. Metallogr. 111, 495–502 (2011).

    Article  Google Scholar 

  74. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with Nb and Ti,” Phys. Met. Metallogr. 113, 687–695 (2012).

    Article  Google Scholar 

  75. I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic modeling of carbonitride formation in steels with V and Ti,” Phys. Met. Metallogr. 113, 974–981 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Arslan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, A., Arslan, H. Composition dependences of thermodynamical properties associated with Pb-free ternary, quaternary, and quinary solder systems. Phys. Metals Metallogr. 117, 472–486 (2016). https://doi.org/10.1134/S0031918X16050045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16050045

Keywords

Navigation