Skip to main content
Log in

Calorimetric measurements of Ga–In, Ga–Sn, and In–Sn binary alloy systems as sustainable lead-free solder alternatives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main objective in exploring a lead-free solder system comprising Gallium, Indium, and Tin lies in the desire to mitigate health hazards related to lead exposure. This research aims to substitute hazardous lead-based solder with a safer alternative due to the non-toxic nature without compromising the other properties. In this study, we investigated the partial and integral enthalpy of mixing for Gallium–Indium (Ga–In), Gallium–Tin (Ga–Sn), and Indium–Tin (In–Sn) binary alloy systems by the help of drop calorimeter at different temperatures of 673 K, 723 K, and 773 K. The results demonstrate that the enthalpy of mixing exhibits certain variations with temperature and composition, providing insights into the interatomic interactions between the constituent elements in the alloy systems. Endothermic enthalpies of mixing were obtained for the Ga–Sn and Ga–In system but slightly exothermic nature was observed for In–Sn system. After getting enthalpy data from the experiments, a Redlich–Kister polynomial fitting was employed to accurately describe the binary interactions within each alloy system. The variation of enthalpy of mixing was found to be temperature dependent for the Ga–In and Ga–Sn system but temperature independency was observed in In–Sn system. Binary interaction parameters for the Ga–Sn, Ga–In and In–Sn were determined at different temperatures. It was observed that interaction parameters are temperature dependent for the Ga–In and Ga–Sn system and independent for the In–Sn system. Comparison of partial molar and integral molar enthalpies of mixing obtained from this study with the literature was attempted. It was found that the results obtained in this study show very good agreement with the data available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors state that the data supporting the study’s findings are included in the article. Additional relevant data that complement the study can be obtained from the corresponding author upon a reasonable request.

References

  1. P.D. Sonawane, V.K. Bupesh Raja, K. Palanikumar, E. Ananda Kumar, N. Aditya, V. Rohit, Effects of gallium, phosphorus and nickel addition in lead-free solders: a review. Mater. Today Proc. 46, 3578–3581 (2020). https://doi.org/10.1016/j.matpr.2021.01.335

    Article  CAS  Google Scholar 

  2. M.N. Ervina Efzan, M.N. Nur Faziera, Review on the effect of gallium in solder alloy. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/957/1/012054

    Article  Google Scholar 

  3. M.S. Yeh, Effects of indium on the mechanical properties of ternary Sn–In–Ag solders. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34(2), 361–365 (2003). https://doi.org/10.1007/s11661-003-0337-0

    Article  Google Scholar 

  4. I.G.B.B. Dharma, M. Hamdi, T. Ariga, The effects of adding silver and indium to lead-free solders. Weld. J. (Miami, FL) 88(4), 45–48 (2009)

    Google Scholar 

  5. K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, Influence of indium addition on characteristics of Sn–0.3Ag–0.7Cu solder alloy. J. Alloys Compd. 485(1–2), 225–230 (2009). https://doi.org/10.1016/j.jallcom.2009.06.020

    Article  CAS  Google Scholar 

  6. C.K. Behera, A. Sonaye, Measurement of zinc activity in the ternary In–Zn–Sn alloys by EMF method. Thermochim. Acta 568, 196–203 (2013). https://doi.org/10.1016/j.tca.2013.06.039

    Article  CAS  Google Scholar 

  7. M.R. Kumar, S. Mohan, C.K. Behera, Measurements of mixing enthalpy for a lead-free solder Bi–In–Sn system. J. Electron. Mater. 48(12), 8096–8106 (2019). https://doi.org/10.1007/s11664-019-07646-0

    Article  CAS  Google Scholar 

  8. V. Singh, D. Jaiswal, D. Pathote, C.K. Behera, drop calorimetric measurement of In–Zn system for lead-free solder applications. Mater. Today Proc. 57, 285–288 (2022). https://doi.org/10.1016/j.matpr.2022.02.601

    Article  CAS  Google Scholar 

  9. C.K. Behera, M. Shamsuddin, Thermodynamic investigations of Sn–Zn–Ga liquid solutions. Thermochim. Acta 487(1–2), 18–25 (2009). https://doi.org/10.1016/j.tca.2009.01.004

    Article  CAS  Google Scholar 

  10. F.M. Azizan, H. Purwanto, M.Y. Mustafa, Effect of Sn addition on mechanical properties of zinc-based alloy. Adv. Mater. Res. 576, 378–381 (2012). https://doi.org/10.4028/www.scientific.net/AMR.576.378

    Article  CAS  Google Scholar 

  11. A.V. Khvan et al., Thermodynamic properties of tin: part I, experimental investigation, ab-initio modelling of α-, β-phase and a thermodynamic description for pure metal in solid and liquid state from 0 K. Calphad Comput. Coupling Phase Diagrams Thermochem. 65, 50–72 (2019). https://doi.org/10.1016/j.calphad.2019.02.003

    Article  CAS  Google Scholar 

  12. V. Singh, D. Pathote, D. Jaiswal, M.R. Kumar, K.K. Singh, C.K. Behera, Measurement of mixing enthalpies for Sn–Bi–Sb lead-free solder system. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10579-4

    Article  Google Scholar 

  13. M.R. Kumar, S. Mohan, C.K. Behera, Thermodynamic accessment experimentally on Bi–Sn System by calorimeter. Mater. Today Proc. 5(14), 27777–27785 (2018). https://doi.org/10.1016/j.matpr.2018.10.013

    Article  CAS  Google Scholar 

  14. S.J. French, The: gallium–indium system. J. Phys. Chem. 1(5), 33–35 (1954)

    Google Scholar 

  15. J.P. Denny, J.H. Hamilton, J.R. Lewis, Constitution of the system gallium–indium. JOM 4(1), 39–42 (1952). https://doi.org/10.1007/bf03397646

    Article  CAS  Google Scholar 

  16. W.J. Svirbely, S.M. Selis, The gallium–indium system. J. Phys. Chem. 58(1), 33–35 (1954)

  17. I. Ansara, J.P. Bros, C. Girard, Thermodynamic analysis of the GaIn, AlGa, AlIn and the AlGaIn systems. Calphad 2(3), 187–196 (1978). https://doi.org/10.1016/0364-5916(78)90008-1

    Article  CAS  Google Scholar 

  18. T.J. Anderson, I. Ansara, The Ga–In (gallium–indium) system. J. Phase Equilib. 12(1), 64–72 (1991). https://doi.org/10.1007/BF02663677

    Article  CAS  Google Scholar 

  19. I. Ansara, M. Gambino, J.P. Bros, Étude Thermodynamique Du Système Ternaire Gallium–Indium–Antimoine. J. Cryst. Growth 32(1), 101–110 (1976). https://doi.org/10.1016/0022-0248(76)90016-6

    Article  CAS  Google Scholar 

  20. D. Jendrzejczyk-Handzlik, P. Handzlik, Enthalpies of mixing of liquid Ga–In and Cu–Ga–In alloys. J. Mol. Liq. 293, 111543 (2019). https://doi.org/10.1016/j.molliq.2019.111543

    Article  CAS  Google Scholar 

  21. D. Jendrzejczyk-Handzlik, P. Handzlik, Mixing enthalpies of liquid Au–Ga–In alloys. J. Mol. Liq. 301, 112439 (2020). https://doi.org/10.1016/j.molliq.2019.112439

    Article  CAS  Google Scholar 

  22. B. Predel, D.W. Stein, Thermodynamic properties of the gallium–indium systems. J. Less Common Met. 18(1), 49–57 (1969)

    Article  CAS  Google Scholar 

  23. T.J. Anderson, I. Ansara, The Ga–Sn (gallium–tin) system. J. Phase Equilib. 13(2), 181–189 (1992)

    Article  CAS  Google Scholar 

  24. I. Ansara, J.P. Bros, M. Gambino, Thermodynamic analysis of the germanium-based ternary systems. Angew. Chem. Int. Ed. 3(3), 225–233 (1979)

    CAS  Google Scholar 

  25. D. Li, S. Delsante, W. Gong, G. Borzone, Partial and integral enthalpies of mixing of Ag–Ga–Sn liquid alloys. Thermochim. Acta 523(1–2), 51–62 (2011). https://doi.org/10.1016/j.tca.2011.04.032

    Article  CAS  Google Scholar 

  26. M. Fornaris, Y.M. Muggianu, M. Gambino, J.P. Bros, Enthalpy of formation of gallium–germanium–tin liquid alloys: evaluation of the liquidus surface of the phase diagram from excess functions of mixing. Z. Nat. Sect. A J. Phys. Sci. 35(11), 1256–1264 (1980). https://doi.org/10.1515/zna-1980-1121

    Article  Google Scholar 

  27. I. Katayama, K. Maki, M. Nakano, T. Iida, Thermodynamic activity in liquid Ga–Sn alloys studied by EMF method. Mater. Trans. JIM 37(5), 988–990 (1996)

    Article  CAS  Google Scholar 

  28. S. Kulawik, W. Gierlotka, A. Dębski, W. Gąsior, A. Zajączkowski, Thermodynamic assessment of the Ga–Sn–Zn system. Calphad Comput. Coupling Phase Diagrams Thermochem. (2020). https://doi.org/10.1016/j.calphad.2020.101765

    Article  Google Scholar 

  29. D. Živković, D. Manasijević, Z. Živković, Thermodynamic study of Ga–Sn and Ga–Zn systems using quantitative differential thermal analysis. J. Therm. Anal. Calorim. 74(1), 85–96 (2003). https://doi.org/10.1023/A:1026373602352

    Article  Google Scholar 

  30. M. Rechchach, A. Sabbar, H. Flandorfer, H. Ipser, Enthalpies of mixing of liquid In–Sn and In–Sn–Zn alloys. Thermochim. Acta 502(1–2), 66–72 (2010). https://doi.org/10.1016/j.tca.2010.02.008

    Article  CAS  Google Scholar 

  31. T.M. Korhonen, J.K. Kivilahti, Thermodynamics of the Sn–In–Ag solder system. J. Electron. Mater. 27(3), 149–158 (1998). https://doi.org/10.1007/s11664-998-0205-1

    Article  CAS  Google Scholar 

  32. B.J. Lee, C.S. Oh, J.H. Shim, Thermodynamic assessments of the Sn–In and Sn–Bi binary systems. J. Electron. Mater. 25, 983 (1996)

    Article  CAS  Google Scholar 

  33. C. Luef, H. Flandorfer, H. Ipser, Enthalpies of mixing of liquid alloys in the In–Pd–Sn system and the limiting binary systems. Thermochim. Acta 417(1), 47–57 (2004). https://doi.org/10.1016/j.tca.2004.01.019

    Article  CAS  Google Scholar 

  34. D. Živković, A. Mitovski, L. Balanović, D. Manasijević, Ž Živković, Thermodynamic analysis of liquid In–Sn alloys using Oelsen calorimetry. J. Therm. Anal. Calorim. 102(3), 827–830 (2010). https://doi.org/10.1007/s10973-010-0785-x

    Article  CAS  Google Scholar 

  35. R. Hultgrcn, R.L. Orr, P.D. Anderson, K.K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys (Wiley, New York, 1963)

    Google Scholar 

  36. I. Ansara, N. Dupin, Cost 507 Thermo Chemical Database for Light Metal Alloys (European Commission DG X11, European Commission, Luxembourg, 1998)

  37. V. Singh, D. Jaiswal, D. Pathote, K. K. Singh, C.K. Behera, Measurement of mixing enthalpies for Bi-Zn lead-free solder system. Mater Today Proc. (2023). ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2023.08.004

  38. D. Jaiswal, D. Pathote, V. Singh, C.K. Behera, Electrochemical behaviour of lead-free Sn–In–Al solders alloys in 3.5 wt. % NaCl solution. Mater Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.02.315

  39. D. Jaiswal, V. Singh, D. Pathote, C.K Behera, Electrochemical behavior of lead-free Sn–0.7Cu–xIn solders alloys in 3.5 wt% NaCl solution. J Mater Sci Mater Electron. 32(18), 23371–23384 (2021). https://doi.org/10.1007/s10854-021-06824-03

  40. M.R. Kumar, V. Singh, V.K. Rai, D. Jaiswal, C.K. Behera, Investigation on mixing heat effect of bi-in and in-sn system at 730 K. Mater. Today Proc. 18, 2917–2923 (2019). https://doi.org/10.1016/j.matpr.2019.07.161

  41. D. Jaiswal, D. Pathote, V. Singh, C.K Beher, Effect of Al addition on electrochemical behavior of Sn-0.7Cu-xAl lead-free solders alloys in 3.5 wt. % NaCl solution. J Mater Eng Perform. (2022). https://doi.org/10.1007/s11665-022-06771-y

  42. V.K. Rai, M.R. Kumar, V. Singh, D. Jaiswal, C.K. Behera, Analysis of corrosion behavior and its characterization of in-sn-bi alloy. Mater. Today Proc. 18, 2322–2328 (2019). https://doi.org/10.1016/j.matpr.2019.07.015

Download references

Acknowledgements

The authors would like to express their gratitude to the Head of the Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India, for giving the assistance necessary to carry out the current study.

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

VS—Conceptualization, methodology, formal analysis, writing of the original draft. DP and DJ—Visualization. KKS and CKB—supervision and writing of the original draft.

Corresponding author

Correspondence to C. K. Behera.

Ethics declarations

Conflict of interest

There are no conflict of interest, according to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Pathote, D., Jaiswal, D. et al. Calorimetric measurements of Ga–In, Ga–Sn, and In–Sn binary alloy systems as sustainable lead-free solder alternatives. J Mater Sci: Mater Electron 34, 2089 (2023). https://doi.org/10.1007/s10854-023-11521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11521-4

Navigation