Skip to main content
Log in

Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The phase equilibria of the Sn-Ag-In system were investigated by means of differential scanning calorimetry (DSC) and metallography. The isothermal sections at 180–600°C, as well as some vertical sections, were determined. Thermodynamic assessment of this system was also carried out based on the experimental data of thermodynamic properties and phase equilibria using the calculation of phase diagram (CALPHAD) method, in which the Gibbs energies of the liquid, fcc, and hcp phases are described by the subregular solution model, and those of compounds are represented by the sublattice model. The thermodynamic parameters for describing the phase equilibria were optimized, and reasonable agreement between the calculated and experimental results was obtained. The maximum bubble-pressure method and dilatometric method have been used in measurements of the surface tension and density of the binary In-Sn and ternary (Sn-3.8Ag)eut + In (5 at.% and 10 at.%) liquid alloys, respectively. The experiments were performed in the temperature range from 160–930°C. The experimental data of the surface tension were compared with those obtained by the thermodynamic calculation of Butler’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Vianco and D.R. Frear, JOM 45, 14 (1993).

    CAS  Google Scholar 

  2. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    CAS  Google Scholar 

  3. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  4. T.M. Korhonen and J.K. Kivilahti, J. Electron. Mater. 27, 149 (1998).

    CAS  Google Scholar 

  5. I. Ohnuma, X.J. Liu, H. Ohtani, and K. Ishida, J. Electron. Mater. 28, 1164 (1999).

    Article  CAS  Google Scholar 

  6. I. Ohnuma, X.J. Liu, H. Ohtani, and K. Ishida, Functional Materials, eds. K. Grassie, E. Tenckhoff, G. Wegner, J. Haubell, and H. Hanselka (Weinheim, Germany: Wiley-VCH, 2000), pp. 69–74.

    Chapter  Google Scholar 

  7. X.J. Liu, S.L. Chen, I. Ohnuma, K. Ishida, and Y.A. Chang, Mechanics and Materials Engineering for Science and Experiments, eds. Y.C. Zhuo, Y.X. Gu, and Z. Li (Science Press, 2001), pp. 334–337.

  8. Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, and K. Ishida, J. Electron. Mater. 30, 1120 (2001).

    CAS  Google Scholar 

  9. M.R. Baren, Indium Alloys and Their Engineering Application, eds. C.E.T. White and H. Okamoto (Materials Park, OH: ASM International, 1993), pp. 15–19.

    Google Scholar 

  10. Z. Moser, W. Gasior, and J. Pstrus, J. Electron. Mater. 30, 1104 (2001).

    CAS  Google Scholar 

  11. S. Sugden, J. Chem. Soc. 124, 27 (1924).

    Google Scholar 

  12. F. Bashforth and J.C. Adams, An Attempt to Test the Theory of Capillary Action (Cambridge, United Kingdom: Cambridge University Press, 1883).

    Google Scholar 

  13. M. Hillert and L.I. Staffansson, Acta Chem. Scand. 24, 3618 (1970).

    Article  CAS  Google Scholar 

  14. O. Redlich and A.T. Kister, Ind. Eng. Chem. 40, 345 (1948).

    Article  Google Scholar 

  15. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  16. J.A.V. Butler, Proc. R. Soc. 135A, 348 (1932).

    Google Scholar 

  17. T. Tanaka, K. Hack, T. Iida, and S. Hara, Z. Metallkd. 87, 380 (1996).

    CAS  Google Scholar 

  18. P.Y. Chevalier, Thermchimica Acta, 136, 45 (1988).

    Article  CAS  Google Scholar 

  19. U.K. Kattner and W. Boettinger, J. Electron. Mater. 23, 603 (1994).

    CAS  Google Scholar 

  20. Y. Xie and Z. Qiao, J. Phase Equilibria 17, 208 (1996).

    CAS  Google Scholar 

  21. H. Ohtani, K. Okuda, and K. Ishida, J. Phase Equilibria 16, 416 (1995).

    CAS  Google Scholar 

  22. H. Ohtani, I. Satoh, M. Miyashita, and K. Ishida, Mater. Trans. 42, 722 (2001).

    Article  CAS  Google Scholar 

  23. B.J. Lee, C.S. Oh, and J.H. Shim, J. Electron. Mater. 25, 983 (1994).

    Google Scholar 

  24. T. Miki, N. Ogawa, T. Nagasaki, and M. Hino, Mater. Trans. 42, 732 (2001).

    Article  CAS  Google Scholar 

  25. B. Gather, P. Schroter, and R. Blachnik, Z. Metallkd. 78, 280 (1987).

    CAS  Google Scholar 

  26. W. Volk, Applied Statistics for Engineers, 2nd ed. (New York: McGraw-Hill, 1969), pp. 260–278.

    Google Scholar 

  27. Z. Moser, W. Gasior, and J. Pstrus, J. Phase Equilibria 22, 254 (2001).

    Article  CAS  Google Scholar 

  28. T. Tanaka, M. Matsuda, K. Nakao, Y. Katayama, D. Kaneko, S. Hara, X. Xing, and Z. Qiao, Z. Metallkd. 92, 1242 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.J., Inohana, Y., Takaku, Y. et al. Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system. J. Electron. Mater. 31, 1139–1151 (2002). https://doi.org/10.1007/s11664-002-0003-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0003-0

Key words

Navigation