Skip to main content
Log in

The Origin and Main Trends in the Evolution of Bilaterally Symmetrical Animals

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

This paper has been written from the standpoint of the phylogenetic tetrad method which includes comparative anatomy, evolutionary developmental biology (“evo–devo”), paleontology, and molecular phylogenomics. The Bilateria consists of two sister groups such as Cnidaria and triploblastic Bilateria. Their common ancestor was a bilaterally symmetrical diploblastic organism with two circles of tentacles, labial and marginal, around a slit-like mouth. Anthozoa retains a primary bilateral symmetry. Medusozoa develops a secondary radial symmetry as a result of adaptation to a sedentary lifestyle. The common ancestor of the triploblastic Bilateria had a through gut formed by amphistomy, a coelom, segmentation, and metameric limbs. The marginal circle of tentacles gave rise to metameric limbs, the labial circle of tentacles gave rise to perioral ciliated tentacles, ventral ciliated sole (neurotroch), and telotroch. The homology of the ciliated tentacle apparatus in Trochozoa, Lophophorata, and Deuterostomia is substantiated. The ciliary armament of the triploblastic Bilateria larvae follows the general structural plan and includes the adoral ciliary field (a homologue of the ciliary tentacles of adult forms), neurotroch, and telotroch. The homology of pre-oral and oral (=tentacular) segments in triploblastic Bilateria is substantiated. The origin of Ecdysozoa as primarily semi-aquatic organisms is discussed. The chitinous cuticle of Ecdysozoa is homologous to the chitinous theca attached to the epidermis. The primary biramous limbs of Ecdysozoa resulted from the integration of tentacles of the marginal and labial circle of the common bilaterian ancestors. Tentacles of the marginal circle gave rise to exopods, and those of the labial circle gave rise to endopods. Examples of a primary biramous limb in Cambrian Ecdysozoa and recent Chelicerata are considered. The secondary biramous limb of Crustacea is a result from the secondary splitting of the endopod of the primary biramous limb into exopodite and endopodite. The problem of Hexapoda wings homology is discussed. Lobopoda is an Ecdysozoa lineage which adapted to life in loose substrate and acquired a worm-like body shape; the primary endopods became lobopods, while the primary exopods gave rise to metameric dorsolateral spines. Habitation in the sediment (Palaeoscolecida and Cephalorhyncha) caused a complete reduction of limbs and segmentation. The role of progenesis in the nematode origin is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.

Similar content being viewed by others

REFERENCES

  1. Acampora, D., Avantaggiato, V., Tuorto, F., et al., Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development, Dev., 1998, vol. 125, pp. 1691–1702.

    Article  Google Scholar 

  2. Acampora, D. and Simeone, A., Understanding the roles of otx1 and otx2 in the control of brain morphogenesis, Trends Neurosci., 1999, vol. 22, pp. 116–122.

  3. Acampora, D., Mazan, S., Lallemand, Y., et al., Forebrain and midbrain regions are deleted in otx22/2 mutants due to a defective anterior neurectoderm specification during gastrulation, Dev., 1995, vol. 121, pp. 3279–3290.

  4. Adoutte, A., Balavoine, G., Lartillot, N., et al., The new animal phylogeny: reliability and implications, Proc. Nat. Acad. Sci. USA, 2000, vol. 97, pp. 4453–4456.

    Article  Google Scholar 

  5. Adrianov, A.V. and Malakhov, V.V., The phylogeny and classification of the phylum Cephalorhyncha, Zoosystem. Ross., 1994, vol. 3, no. 2, pp. 181–201.

    Google Scholar 

  6. Adrianov, A.V. and Malakhov, V.V., Synopsis of the system of phylum Cephalorhyncha, Biol. Morya, 1995a, vol. 21, no. 2, pp. 108–115.

    Google Scholar 

  7. Adrianov, A.V. and Malakhov, V.V., Comparative morphological analysis of Cephalorhyncha organization, 5. Phylogeny and system, Zool. Zh., 1995b, vol. 74, no. 7, pp. 19–27.

    Google Scholar 

  8. Adrianov, A.V. and Malakhov, V.V., The phylogeny, classification, and zoogeography of the class Priapulida. Phylogeny and classification, Zoosyst. Ross., 1996a, part 1, vol. 4, no. 2, pp. 219–238.

  9. Adrianov, A.V. and Malakhov, V.V., Priapulidy (Priapulida): stroenie, razvitie, filogeniya i sistema (Priapulides (Priapulida): Structure, Development, Filogeny, and System), Moscow: KMK Sci. Press Ltd., 1996b.

  10. Adrianov, A.V. and Malakhov, V.V., Golovokhobotnye chervi (Cephalorhyncha) Mirovogo okeana (Opredelitel’ morskoi fauny) (Cephalorhyncha of the World Ocean (Sea Fauna Classification)), Moscow: KMK, 1999.

  11. Adrianov, A.V., Malakhov, V.V. and Mayorova, A.S., Organization of the tentacular apparatus of sipunculid Thysanocardia nigra (Sipuncula, Sipunculoidea), Zool. Zh. 2005a, vol. 84, no. 8, pp. 922–928 (in Russ. with English Summary).

  12. Adrianov, A., Malakhov, V., Mayorova, A., Microscopic anatomy of the tentacles of Thysanocardia nigra Ikeda, 1904 (Sipuncula) from the Sea of Japan, Publ. Seto Mar. Biol. Lab., 2005b, vol. 40, no. 3/4, pp. 159–169.

    Article  Google Scholar 

  13. Adrianov, A.V., Mayorova, A.S. and Malakhov, V.V., Embryonic and larval development of the peanut worm Themiste pyroides (Sipuncula: Sipunculoidea) from the Sea of Japan, Invertebr. Reprod. Dev., 2008, vol. 52, no. 3, pp. 143–151. https://doi.org/10.1080/07924259.2008.9652282

    Article  Google Scholar 

  14. Aguirre, A., Fernandez, I., Roldan, C., and Benito, J., Further ultrastructural observations on the epidermis of phoronids: Phoronis australis and Phoronis hippocrepia, Trans. Am. Microsc. Soc., 1993, vol. 112, pp. 280–291.

    Article  Google Scholar 

  15. Akhrem, A.A., Levina, I.S., and Titov, Yu.A., Ekdizony steroidnye gormony nasekomykh (Ecdysones are Insect Steroid Hormones), Minsk: Nauka Tekhn., 1973.

  16. Aleshin, V.V. and Petrov, N.B., Molecular evidence of regression in the evolution of metazoans, Zh. Obshch. Biol., 2002, vol. 63, no. 3, pp. 195–208.

    Google Scholar 

  17. Allman, G.J., A Monograph of the Gymnoblastic or Tubularian Hydroids, London: Ray Soc., 1872.

    Google Scholar 

  18. Ameye, L., Hermann, R., DuBois, P., and Flammang, P., Ultrastructure of the echinoderm cuticle after fast-freezing/freeze substitution and conventional chemical fixations, Microsc. Res. Tech., 2000, vol. 48, pp. 385–393.

    Article  Google Scholar 

  19. Anderson, D.T., The comparative early embryology of the Oligochaeta, Hirudinae, and Onychophora, Proc. Linn. Soc. New South Wales, 1966, vol. 91, pp. 10–43.

    Google Scholar 

  20. Anderson, D.T., Embryology and Phylogeny in Annelids and Arthropods, Oxford: Pergamon Press, 1973.

  21. Andrade, S.C.S., Novo, M., Kawauchi, G.Y., et al., Articulating “Archiannelids”: phylogenomics and annelid relationships, with emphasis on meiofaunal taxa, Mol. Biol. Evol., 2015, vol. 32, pp. 2860–2875.

  22. Andrikou, C. and Hejnol, A., FGF signaling induces mesoderm in members of Spiralia, Dev., 2021, 148 (10), dev196089. https://doi.org/10.1242/dev.196089

    Article  Google Scholar 

  23. Andrikou, C., Passamaneck, Y.J., Lowe, C.J., et al., Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods, EvoDevo, 2019, vol. 10, no. 1. https://doi.org/10.1186/s13227-019-0146-1

  24. Arenas-Mena, C., Embryonic expression of hefoxa1 and hefoxa2 in an indirectly developing polychaete, Dev. Genes Evol., 2006, no. 216, pp. 727–736. https://doi.org/10.1007/s00427-006-0099-y

  25. Arenas-Mena, C., Sinistral equal-size spiral cleavage of the indirectly developing polychaete hydroides elegans, Dev. Dyn., 2007, vol. 236, pp. 1611–1622.

    Article  Google Scholar 

  26. Arenas-Mena, C., The transcription factors heblimp and het-brain of an indirectly developing polychaete suggest ancestral endodermal, gastrulation, and sensory cell-type specification roles, J. Exp. Zool. (Mol. Dev. Evol.), 2008, vol. 310B, pp. 567–576.

  27. Arenas-Mena, C., Brachyury, tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans, Int. J. Dev. Biol., 2013, vol. 57, pp. 73–83. https://doi.org/10.1387/ijdb.120056ca

    Article  Google Scholar 

  28. Arenas-Mena, C. and Li, A., Development of a feeding trochophore in the polychaete Hydroides elegans, Int. J. Dev. Biol., 2014, vol. 58, pp. 575–583. https://doi.org/10.1387/ijdb.140100ca

    Article  Google Scholar 

  29. Arenas-Mena, C. and Wong, K.S-Y., Heotx expression in an indirectly developing polychaete correlates with gastrulation by invagination, Dev. Genes Evol., 2007, vol. 217, pp. 373–384. https://doi.org/10.1007/s00427-007-0150-7

    Article  Google Scholar 

  30. Arenas-Mena, C., Wong K.S-Y., and Arandi-Forosani, N., Ciliary band gene expression patterns in the embryo and trochophore larva of an indirectly developing polychaete, Gene Expression Patterns, 2007, vol. 7, pp. 544–549.

    Article  Google Scholar 

  31. Arendt, D., Hox genes and body segmentation, Science, 2018, vol. 361, pp. 1310–1311.

    Article  Google Scholar 

  32. Arendt, D., Benito-Gutierrez, E., Brunet, T., et al., Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution, Philos. Trans. R. Soc., B, 2015, vol. 370, pp. 1–18.

    Article  Google Scholar 

  33. Arendt, D. and Nubler-Jung, K., Comparison of early nerve cord development in insects and vertebrates, Development, 1999, vol. 126, pp. 2309–2325.

  34. Arendt, D., Technau, U., and Wittbrodt, J., Evolution of the bilaterian larval foregut, Nature, 2001, vol. 409, pp. 81–85.

  35. Arendt, D., Tessmar, K., de Campos-Baptista, M.I.M., et al., Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria, Development, 2002, vol. 129, pp. 1143–1154.

    Article  Google Scholar 

  36. Arendt, D., Tosches, M.A., and Marlow, H., From nerve net to nerve ring, nerve cord and brain-evolution of the nervous system, Nat. Rev. Neurosci., 2016, vol. 17, pp. 61–72.

    Article  Google Scholar 

  37. Aria, C. and Caron, J.-B., Mandibulate convergence in an armoured Cambrian stem chelicerate, BMC Evol. Biol., 2017, vol. 17, no. 1. https://doi.org/10.1186/s12862-017-1088-7

  38. Aria, C. and Caron, J.B., A Middle Cambrian arthropod with chelicerae and proto-book gills, Nature, 2019, vol. 573, pp. 586–589. https://doi.org/10.1038/s41586-019-1525-4

    Article  Google Scholar 

  39. Aria, C., Caron, J.–B., and Gaines, R., A large new leanchoiliid from the Burgess Shale and the influence of inapplicable states on stem arthropod phylogeny, Palaeontology, 2015, vol. 58, no. 4, pp. 629–660.

  40. Aria, C., Zhao, F., Zeng, H.G., et al., Fossils from South China redefine the ancestral euarthropod body plan, BMC Evol. Biol., 2020, vol. 20, no. 4. https://doi.org/10.1186/s12862-019-1560-7

  41. Aronowicz, J. and Lowe, C.J., Hox gene expression in the Hemichordate saccoglossus Kowalevskii and the evolution of deuterostome nervous systems, Integr. Comp. Biol., 2006, vol. 46, pp. 890–901.

    Article  Google Scholar 

  42. Atkins, D., The ciliary feeding mechanism of the entoproct Polyzoa and a comparison with that oft he ectoproct Polyzoa, Q. J. Microsc. Sci., 1932, vol. 75, pp. 393–423.

  43. Atkins, D., The ciliary feeding mechanisms of the Megathyridae (Brachiopoda) and the growth stages of the lophophore, J. Mar. Biol. Ass. U.K., 1960, vol. 39, pp. 459–479.

  44. Atkins, D. and Rudwick, J. S., The lophophore and ciliary mechanisms of the brachiopod Crania anomala (Miiller), J. Mar. Biol. Ass. U.K., 1962, vol. 42, pp. 469–480.

  45. Auerbach, C., The development of the legs, wings, and halteres in wild type and some mutant strains of Drosophila melanogaster, Proc. R. Soc. Edinburgh, 1936, vol. 58, pp. 787–815.

  46. Averof, M. and Cohen, S., Evolutionary origin of insect wings from ancestral gills, Nature, 1997, vol. 385, pp. 627–630. https://doi.org/10.1038/385627a0

    Article  Google Scholar 

  47. Azuma, K. and Ifuku, S., Nanofibers based on chitin: a new functional food, Pure Appl. Chem., 2016, vol. 88(6), pp. 605–619. https://doi.org/10.1515/pac-2016-0504

    Article  Google Scholar 

  48. Baguñà, J., Martinez, P., Paps, J., et al., Back in time: a new systematic proposal for the Bilateria, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 1481–1491. https://doi.org/10.1098/rstb.2007.2238

    Article  Google Scholar 

  49. Bakalenko, N.I., Novikova, E.L., Nesterenko, A.Y. et al., Hox gene expression during postlarval development of the polychaete Alitta virens, EvoDevo, 2013, vol. 4, no. 1. https://doi.org/10.1186/2041-9139-4-13

  50. Balfour, F.M., Anatomy and development of peripatopsis capensis, Quart. J. Micr. Soc., 1883, vol. 23, pp. 213–259.

    Google Scholar 

  51. Barker, G.C., Mercer, J.G., Delves, C.J. et al., Occurrence and possible significance of developmental hormones in nematodes, Progress Comp. Endocrin., Wiley–Liss, Inc., 1990, pp. 710–715.

    Google Scholar 

  52. Bartolomaeus, T. and Ruhberg, H., Ultrastructure of the body cavity lining in embryos of Epiperipatus biolleyi (Onychophora, Peripatidae), a comparison with annelid larvae, Invert. Biol., 1999, vol. 118, pp. 165–174.

    Article  Google Scholar 

  53. Baylis, H.A., The systematic position of the Nematoda, Annals and Mag. Nat. Hist., 1924, vol. 13, no. 73, pp. 165–173. https://doi.org/10.1080/00222932408633020

    Article  Google Scholar 

  54. Beermann, A., Aranda, M., and Schroder, R., The sp8 zinc-finger transcription factor is involved in allometric growth of the limbs in the beetle Tribolium castaneum, Development, 2004, vol. 131, pp. 733–742.

    Article  Google Scholar 

  55. Beermann, A., Pruhs, R., Lutz, R., and Schroder, R., A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect, Development, 2011, vol. 138, pp. 2793–2805.

    Article  Google Scholar 

  56. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh. Vol. 1, Promorfologiya, vol. 2, Organologiya (Fundamentals of Comparative Anatomy of Invertebrates. Vol. 1: Promorphology, Vol. 2: Organology), Moscow: Nauka, 1964.

  57. Beneden E., van., Recherches sur le development des Arachnactis. Contribution a la morphologie de Cerianthides, Arch. Biol. (Paris), 1891, vol. 11, pp. 114–146.

    Google Scholar 

  58. Berchtold, J.P., Sauber, F., and Reuland M., Etude ultrastructurale de l’evolution du tegument de la Sangsue Hirudo medicinalis L. (Annelide, Hirudinee) au cours d’un cycle de mue (Developmental changes in the integument of the leech Hirudo medicinalis L. (Annelida, Hirudinea) during a molting cycle), An ultrastructural study, Int. J. Invertebr. Repr. Dev., 1985, vol. 8, pp. 127–138. https://doi.org/10.1080/01688170.1985.10510136

    Article  Google Scholar 

  59. Bergström, J. and Brassel, G., Legs in the trilobite rhenops from the Lower Devonian hunsruck shale, Lethaia, 1984, vol. 17, pp. 67–72.

    Article  Google Scholar 

  60. Bergström, J. and Hou X.-G., Chengjiang arthropods and their bearing on early arthropod evolution, in Arthropod Fossils and Phylogeny, Edgecombe, G.D., Ed., New York: Columbia Univ. Press, 1998, pp. 151–184.

    Google Scholar 

  61. Bergström, J., Morphology of fossil arthropods as a guide to phylogenetic relationships, in Arthropod Fossils and Phylogeny, Gupta, A.P., Ed., New York: Van Nostrand Reinhold Co., 1978, pp. 1–56.

    Google Scholar 

  62. Bergström, J., Opabinia and Anomalocaris, unique Cambrian “Arthropods”, Lethaia, 1986, vol. 19, pp. 241–246.

    Article  Google Scholar 

  63. Bergström, J., The Cambrian Opabinia and Anomalocaris, Lethaia, 1987, vol. 20, pp. 187–188.

    Article  Google Scholar 

  64. Bergström, J. and Hou, X.–G., Cambrian Onychophora or Xenusians, Zool. Anz., 2001, vol. 24, nos. 3–4, pp. 237–245.

    Article  Google Scholar 

  65. Bergström, J. and Hou, X.-G., Arthropod origins, Bull. Geosci., 2003, vol. 78, no. 4, pp. 323–334.

    Google Scholar 

  66. Bergström, J. and Hou, X.-G., Early Palaeozoic non-lamellipedian arthropods, in Crustacea and Arthropod Relationships, Koenemann, S. and Jenner, R., Eds., CRC Press, 2005, pp. 81–101. https://doi.org/10.1201/9781420037548

    Book  Google Scholar 

  67. Bergström, J., Hou, X.-G., Zhang, X., et al., A new view of the Cambrian arthropod Fuxianhuia, GFF, 2008, vol. 130, no. 4, pp. 189–201.

    Article  Google Scholar 

  68. Bielen, H., Oberleitner, S., Marcellini, S., et al., Divergent functions of two ancient Hydra Brachyury paralogues suggest specific roles for their c-terminal domains in tissue fate induction, Dev., 2007, vol. 134, pp. 4187–4197. https://doi.org/10.1242/dev.010173

    Article  Google Scholar 

  69. Bilbao, A., Wajnryb, E., Vanapalli, S.A., and Blawzdziewicz, J., Nematode locomotion in unconfined and confined fluids, Phys. Fluids, 2013. vol. 25, 081902. https://doi.org/10.1063/1.4816718

    Article  Google Scholar 

  70. Bleidorn, C., Helm, C., Weigert, A., et al., Annelida, in Evolutionary Developmental Biology of Invertebrates 2: Lophotrochozoa (Spiralia), Wanninger, A., Ed., Wien: Springer-Verlag, 2015. https://doi.org/10.1007/978-3-7091-1871-9_9

    Book  Google Scholar 

  71. Borisanova, A.O., Yushin, V.V., Malakhov, V.V., et al., The fine structure of the cuticle of kamptozoans is similar to that of annelids, Zoomorphology, 2015, vol. 134, pp. 165–181. https://doi.org/10.1007/s00435-015-0261-z

    Article  Google Scholar 

  72. Borowiec, M. L., Lee, E. K., Chiu, J. C., et al., Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa, BMC Genomics, 2015, vol. 16, p. 987. https://doi.org/10.1186/s12864-015-2146-4

    Article  Google Scholar 

  73. Bouligand, Y., Twisted fibrous arrangement in biological material and cholesteric mesophases, Tissue Cell, 1972, vol. 4, pp. 189–217.

    Article  Google Scholar 

  74. Bouligand, Y., Cholesteric order in biopolymers, ACS Symp. Ser., 1978, pp. 237–247.

  75. Boxshall, G.A., The evolution of arthropod limbs, Biol. Rev., 2004, vol. 79, pp. 253–300.

    Article  Google Scholar 

  76. Boxshall, G.A. and Jaume, D., Exopodites, epipodites and gills in crustaceans, Arthropod Syst. Phyl., 2009, vol. 67, pp. 229–254.

    Google Scholar 

  77. Boyle, M.J. and Seaver, E.C., Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp., I, Evol. Dev., 2008, no. 10, pp. 89–105. https://doi.org/10.1111/j.1525-142X.2007.00216.x

  78. Boyle, M.J. and Seaver, E.C., Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula), EvoDevo, 2010, vol. 1, no. 1. https://doi.org/10.1186/2041-9139-1-2

  79. Boyle, M. J., Yamaguchi, E., and Seaver, E., Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida), EvoDevo, 2014, 5:39.

  80. Brauer A., Beitraige zur Kenntniss der Entwicklungsgeschichte des Skorpions, Z. Wiss. Zool., 1894, vol. 57, pp. 409–432.https://doi.org/10.1186/2041-9139-5-39

  81. Briggs, D.,E.,G., Bivalved arthropods from the Middle Cambrian Burgess Shale of British Columbia, Palaeontology, 1977, vol. 20, pp. 595–621.

    Google Scholar 

  82. Briggs, D.E.,G., The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc., B, 1978, vol. 281, pp. 439–487.

    Google Scholar 

  83. Briggs, D.E.G., Early arthropods: dampening the Cambrian explosion, in Arthropod Paleobiology. Short Courses in Paleontology, Culver, S.J., Ed., Paleontol. Soc., no. 3, 1990, pp. 24–43.

  84. Briggs, D.E.G. and Collins, D., The arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia, Palaeontology, 1999, vol. 42, pp. 953–977.

    Article  Google Scholar 

  85. Briggs, D.E.G., Siveter Derek J., et al., Silurian horseshoe crab illuminates the evolution of arthropod limbs, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 15702–15705.

    Article  Google Scholar 

  86. Brinckmann-Voss, A., Anthomedusae/Athecata (Hydrozoa, Cnidaria) of the Medi-terranean. Part I. Capitata, Fauna Flora Golfo Napoli, 1970, vol. 39, pp. 1–96.

    Google Scholar 

  87. Broun, M., Sokol, S., and Bode, H.R., Cngsc, a Homologue of goosecoid, Participates in the Patterning of the Head, and Is Expressed in the Organizer Region of Hydra, Development, 1999, vol. 126, pp. 5245–5254.

    Article  Google Scholar 

  88. Browne, W.E., Price, A.L., Gerberding, M., et al., Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis , Genesis, 2005, vol. 42, pp. 124–149.

    Article  Google Scholar 

  89. Bruce, H.S. and Patel, N.H., Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments, Nat. Ecol. Evol., 2020, vol. 4, pp. 1703–1712. https://doi.org/10.1038/s41559-020-01349-0

    Article  Google Scholar 

  90. Brusca, R.C., Moore, W., and Shuster, S.M., Invertebrates, Oxford: Sinauer Assoc., 2016.

    Google Scholar 

  91. Bruton, D.L., A death assemblage of priapulid worms from the Middle Cambrian Burgess Shale, Lethaia, 2001, vol. 34, no. 2, pp. 163–167.

    Article  Google Scholar 

  92. Bubel, A., Stephens, R.M., Fenn, R.H., and Fieth, P., An electron microscope, X-ray diffraction and amino acid analysis study of the opercular plate and habitation tube of Pomatoceros lamarlkii Quatrefages (Polychaeta: Serpulidae), Comp. Biochem. Physiol., 1983, vol. 74 B, pp. 837–850.

  93. Budd, G., A, Cambrian gilled lobopod from Greenland, Nature, 1993, vol. 364, pp. 709–711.

    Article  Google Scholar 

  94. Budd, G.E., The morphology of Opabinia regalis and the reconstruction of the arthropod stem group, Lethaia, 1996, vol. 29, pp. 1–14.

    Article  Google Scholar 

  95. Budd G. E. Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland, in Arthropod Relationships. Systematics Association. Spec. Vol., Ser. 55, Fortey, R.A. and Thomas, R.H., Eds., London: Chapman & Hall, 1997, pp. 125–138.

  96. Budd, G.E., The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N. Greenland), Trans. R. Soc. Edinburgh: Earth Sci., 1999, vol. 89, pp. 249–290. https://doi.org/10.1017/s0263593300002418

    Article  Google Scholar 

  97. Budd, G.E., Why are arthropods segmented? Evol. Dev., 2001, vol. 3, pp. 332–342.

    Article  Google Scholar 

  98. Budd, G.E., A palaeontological solution to the arthropod head problem, Nature, 2002, vol. 417, pp. 271–275. https://doi.org/10.1038/417271a

    Article  Google Scholar 

  99. Budd, G.E. and Daley, A.C., The lobes and lobopods of Opabinia regalis from the Middle Cambrian Burgess Shale, Lethaia, 2012, vol. 45, pp. 83–95. https://doi.org/10.1111/j.1502-3931.2011.00264.x

    Article  Google Scholar 

  100. Bullivant, J.S., The method of feeding of Lophophorates (Bryozoa, Phoronida, Brachiopoda), N.Z. J. Mar. Freshw. Res., 1968, vol. 2, pp. 135–146. https://doi.org/10.1080/00288330.1968.9515231

    Article  Google Scholar 

  101. Carlgren, O., Ceriantharia, Dan. Ingolf-Exped., 1912, vol. 5, no. 3, pp. 1–78.

    Google Scholar 

  102. Carlisle, D.B., On the exuvia of Priapulus caudatus Lamarck, Arkiv. Zool., 1959, vol. 12, pp. 79–81.

    Google Scholar 

  103. Caron, J-B. and Aria, C., The collins’ monster, a spinous suspension-feeding lobopodian from the Cambrian Burgess Shale of British Columbia, Palaeontology, 2020, vol. 63, no. 6, pp. 979–994. https://doi.org/10.1111/pala.12499

    Article  Google Scholar 

  104. Caron, J.-B. and Jackson, D.A., Paleoecology of the greater phyllopod bed community, Burgess Shale, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 258, pp. 222–256.

    Article  Google Scholar 

  105. Caron, J.-B., Smith, M.R., and Harvey, T.H.P., Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians, Proc. R. Soc. B, 2013, vol. 280, no. 1767, p. 20131613. https://doi.org/10.1098/rspb.2013.1613

  106. Castro, L.F., Rasmussen, S.L., Holland, P.W., et al., A gbx homeobox gene in Amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary, Dev. Biol., 2006, no. 295, pp. 40–51. https://doi.org/10.1016/j.ydbio.2006.03.003

  107. Chamoy, L., Nicola, M., Ravaux, J., et al., A novel chitin-binding protein from vestimentiferan Riftia pachyptila interacts specifically with b-chitin, J. Biol. Chem., 2001, vol. 276, pp. 8051–8058.

    Article  Google Scholar 

  108. Charles, J.P., The regulation of expression of insect cuticle protein genes, Insect Biochem. Mol. Biol., 2010, vol. 40, pp. 205–213.

    Article  Google Scholar 

  109. Chen, Q. and Peng, D., Nematode Chitin and Application, in Targeting Chitin-containing Organisms. Ch. 10. Advances in Experimental Medicine and Biology 1142, Yang, Q. and Fukamizo, T., Eds., 2019. https://doi.org/10.1007/978-981-13-7318-3_10.

  110. Chen, J.-Y. and Zhou, G.-Q., Biology of the Chengjiang fauna, Bull. Natl. Mus. Nat. Sci. (Taichung, Taiwan), 1997, no. 10, pp. 11–103.

  111. Chen, J.-Y., Edgecombe, G.D., and Ramskold, L., Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China, Rec. Austral. Mus., 1997a, vol. 49, pp. 1–24.

    Article  Google Scholar 

  112. Chen, J.-Y., Edgecombe, G.D., Ramskold, L., et al., Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution, Science, 1995c, vol. 268, pp. 1339–1343.

    Article  Google Scholar 

  113. Chen, J.-Y., Erdtmann, B.-D., and Steiner, M., Die untercambrische fossillagerstatte chengiang (China), Fossilien, 1992, vol. 9, pp. 273–282.

    Google Scholar 

  114. Chen, J.-Y., Hou, X.-G., and Lu, H.-Z., Early Cambrian netted scale-bearing worm-like sea animal, Acta Palaeontol. Sinica, 1989, vol. 28, pp. 1–16.

    Google Scholar 

  115. Chen, J.-Y., Ramskold, L., and Zhou, G.-Q., Evidence for monophyly and arthropod affinity of Cambrian giant predators, Science, 1994b, vol. 264, pp. 1304–1308.

    Article  Google Scholar 

  116. Chen, J.Y., Waloszek, D., and Maas, A., A new ‘great-appendage’ arthropod from the lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages, Lethaia, 2004, vol. 37, no. 1, pp. 3–20.

  117. Chen, J.-Y., Zhou, G.Q., and Ramskold, L., A new Early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China, Trans. R. Soc., Edinburg. Earth Sci., 1994a, vol. 85, pp. 275–282.

    Article  Google Scholar 

  118. Chen, J.-Y., Zhou, G.-Q., and Ramskold, L., The Cambrian lobopodian Microdictyon sinicum, Bull. Natl. Mus. Nat. Sci. (Taichung, Taiwan), 1995a, no. 5, pp. 1–93.

  119. Chitwood, B.G. and Chitwood, M.B., An Introduction to Nematology, Baltimore: Monumental Print. Co., 1950.

    Google Scholar 

  120. Chitwood, D.J., Biochemistry and function of nematode steroids, Crit. Rev. Biochem. Mol. Biol., 1999, no. 34(4), pp. 273–284.

  121. Clark, R.B., Dynamics in Metazoan Evolution. The Origin of the Coelom and Segments, Oxford: Clarendon Press, 1964.

    Google Scholar 

  122. Clark-Hachtel, C.M., Linz, D.M., and Tomoyasu, Y., Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 16951–16956. https://doi.org/10.1073/pnas.1304332110

    Article  Google Scholar 

  123. Clark-Hachtel, C.M. and Tomoyasu, Y., Exploring the origin of insect wings from an evo-devo perspective, Curr. Opin. Insect Sci., 2016, vol. 13, pp. 77–85.

    Article  Google Scholar 

  124. Claus, C., Untersuchungen zur Erforschung der Genealogischen Grundlage des Crustaceen System, Wien, 1876.

    Book  Google Scholar 

  125. Cobb, N.A., One hundred new nemas (type species of 100 new genera), Contrib. Sci. Nematol., 1920, vol. 9, pp. 217–343.

    Google Scholar 

  126. Cohen S.M. Imaginal disc development, in The Development of Drosophila Melanogaster, Bate, M. and Martinez Arias, A., New-York: Cold Spring Harbor Lab., 1993, vol. 2, pp. 747–842.

  127. Cohen, B., Simcox, A.A., and Cohen, S.M., Allocation of the thoracic imaginal primordia in the drosophila embryo, Development, 1993, vol. 117, pp. 597–608.

    Article  Google Scholar 

  128. Cohen, N. and Boyle, J.H., Undulatory Locomotion, 2009. arXiv:0908.2769v1

  129. Cohen, N. and Boyle, J.H., Swimming at low Reynolds number: a beginner’s guide to undulatory locomotion, Contemp. Phys., 2010, vol. 51, no. 2, pp. 103–123.

    Article  Google Scholar 

  130. Cohen, N. and Denham, J.E., Whole animal modeling: piecing together nematode locomotion, Curr. Opin. Syst. Biol., 2019, vol. 13, pp. 150–160.

    Article  Google Scholar 

  131. Collins A., Phylogeny of Medusozoa and the Evolution of Cnidarian Life Cycles, J. Evol. Biol., 2002, vol. 15, pp. 418–432. https://doi.org/10.1046/j.1420-9101.2002.00403.x

    Article  Google Scholar 

  132. Collins A.G., Recent insights into cnidarian phylogeny, Smithson. Contrib. Mar. Sci., 2009, vol. 38, pp. 139–149.

    Google Scholar 

  133. Collins, A.G., Schuchert P., Marques A.C., et al., Medusozoan Phylogeny and Character Evolution Clarified by New Large and Small Subunit rDNA Data and an Assessment of the Utility of Phylogenetic Mixture Models, Syst. Biol., 2006, vol. 55, pp. 97–115. https://doi.org/10.1080/10635150500433615

    Article  Google Scholar 

  134. Collins, D., The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.), J. Paleontol., 1996, vol. 70, pp. 280–293.

    Article  Google Scholar 

  135. Comstock, J.H. and Needham, J.G., The wings of insects, Am. Nat., 1898, vol. 32, no. 373, pp. 43–48.

    Article  Google Scholar 

  136. Conway-Morris, S., A new metazoan from the Cambrian Burgess Shale of British Columbia, Palaeontology, 1977a, vol. 20, pp. 623–640.

    Google Scholar 

  137. Conway-Morris, S., Fossil priapulid worms, Spec. Pap. Palaeontol., 1977b, vol. 20, pp. 1–101.

    Google Scholar 

  138. Conway-Morris, S., The community structure of the Middle Cambrian phyllopod bed (Burgess Shale), Palaeontology, 1986, vol. 29, pp. 423–467.

    Google Scholar 

  139. Conway-Morris, S., Burgess Shale faunas and the Cambrian explosion, Science, 1989, no. 246, pp. 339–346.

  140. Conway-Morris, S., Late PreCambrian and Cambrian soft-bodied faunas, Ann. Rev. Earth Planet. Sci., 1990, vol. 18, pp. 101–122.

    Article  Google Scholar 

  141. Conway-Morris, S., The fossil record and early evolution of the Metazoa, Nature, 1993, vol. 361, pp. 219–225.

    Article  Google Scholar 

  142. Conway-Morris, S., The cuticular structure of the 495-myr-old type species of the fossil worm ~Palaeoscolex~, ~P. piscatorum~ (Priapulida), Zool. J. Linn. Soc., 1997, vol. 119, pp. 69–82. https://doi.org/10.1111/j.1096-3642.1997.tb00136.x

    Article  Google Scholar 

  143. Conway-Morris, S. and Peel, J.S., New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale, and Kinzers hale, Acta Palaeontol. Polon., 2010, vol. 55, no. 1, pp. 141–156. https://doi.org/10.4202/app.2009.0058

    Article  Google Scholar 

  144. Conway-Morris, S. and Whittington, M.B., The animals of the Burgess Shale, Sci. Am., 1979, vol. 241, pp. 122–133.

    Article  Google Scholar 

  145. Coulcher, J.F., Edgecombe, G.D., and Telford, M.J., Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages, Sci. Rep., 2015, vol. 5, p. 15757. https://doi.org/10.1038/srep15757

    Article  Google Scholar 

  146. Crampton, G.C., Phylogenetic origin and the nature of the wings of insects according to the paranotal theory, J. New-York Entomol. Soc., 1916, vol. 24, pp. 1–39.

    Google Scholar 

  147. Crezee, M. and Tyler, S., Hesiolicium gen. n. (Turbellaria, Acoela) and observations on its ultrastructure, Zool. Scr., 1976, no. 5, pp. 207–216.

  148. Crofton, H.D., Nematodes, London: Hutchinson Univ. Libr, 1966.

    Google Scholar 

  149. Crofton H.D. Form, function and behavior, in Plant Parasitic Nematodes, Zuckermann, B.M., Mai, W.F., and Rohde, R.A., Eds., New York: Acad. Press, 1971, pp. 83–113.

    Google Scholar 

  150. Daly M., Brugler M.R., Cartwright P., et al., The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus, Zootaxa, 2007, vol. 182, pp. 127–128. https://doi.org/10.5281/zenodo.180149

    Article  Google Scholar 

  151. Damen, W.G., Saridaki, T., and Averof, M., Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets, Curr. Biol., 2002, vol. 12, no. 19, pp. 1711–1716. https://doi.org/10.1016/s0960-9822(02)01126-0

    Article  Google Scholar 

  152. Davey K.G. Endocrinology of nematodes, in Endocrinology of Selected Invertebrate Types, A.R. Liss, Inc., 1988, pp. 63–86.

    Google Scholar 

  153. Dawydoff, C., Traite d’Embryologie Comparee des Invertebres, Masson, Paris, 1928.

    Google Scholar 

  154. de Rosa, R., Prud’homme, B., Balavoine, G., caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth, Evol. Dev., 2005, vol. 7, pp. 574–587. https://doi.org/10.1111/j.1525-142X.2005.05061.x

    Article  Google Scholar 

  155. Denes, A.S., Jekely, G., Steinmetz, P.R.H., et al., Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria, Cell, 2007, vol. 129, pp. 277–288. https://doi.org/10.1016/j.cell.2007.02.040

    Article  Google Scholar 

  156. Dennis, R.D.W., Insect morphogenetic hormones and developmental mechanism in the nematode, Nematospiroides Dubius, Comp. Biochem. Physiol., 1976, vol. 53A, pp. 53–56.

    Article  Google Scholar 

  157. Dennis, R.D.W., On ecdysone-binding proteins and ecdysone-like material in nematodes, Int. J. Parasitol., 1977, vol. 7, pp. 181–188.

    Article  Google Scholar 

  158. Doctor, J., Fristrom, D., and Fristrom, J.W., The pupal cuticle of Drosophila: biphasic synthesis of pupal cuticle proteins in vivo and in vitro in response to 20-hydroxyecdysone, J. Cell. Biol., 1985, vol. 101, pp. 189–200.

    Article  Google Scholar 

  159. Dogel, V.A., Zoologiya bespozvonochnykh (Invertebrate Zoology), Moscow: Vyssh. Shkola, 1981.

  160. Dohle, W., Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name tetraconata for the monophyletic unit Crustacea + hexapoda, Ann. Soc. Entomol. France, 2001, vol. 37, pp. 85–103. https://doi.org/10.3354/meps207033

    Article  Google Scholar 

  161. Duan, Y.-H., Han, J., Fu, D-J., et al., Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the lower Cambrian Chengjiang Lagerstätte, South China, Gondwana Res., 2014, vol. 25, pp. 983–990. https://doi.org/10.1016/j.gr.2013.03.011

    Article  Google Scholar 

  162. DuBuc T.Q., Stephenson T.B., Rock A.Q., et al., Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation, Nat. Commun., 2018, vol. 9, no. 1. https://doi.org/10.1038/s41467-018-04184-x

  163. Dunn, C.W., Giribet, G., Edgecombe, G.D., et al., Animal phylogeny and its evolutionary implications, Ann. Rev. Ecol. Evol. Syst., 2014, vol. 45, pp. 371–395. https://doi.org/10.1146/annurev-ecolsys-120213-091627

    Article  Google Scholar 

  164. Dunn, C.W., Hejnol, A., Matus, D.Q., et al., Broad phylogenomic sampling improves resolution of the animal tree of life, Nature, 2008, vol. 452, pp. 745–750. https://doi.org/10.1038/nature06614

    Article  Google Scholar 

  165. Dzik, J., Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan, Palaeontology, 2003, vol. 46, pp. 93–112. https://doi.org/10.1111/1475-4983.00289

    Article  Google Scholar 

  166. Dzik, J., The xenusian-to-anomalocaridid transition within the lobopodians, Boll. Soc. Paleontol. Ital., 2011, vol. 50, pp. 65–74.

    Google Scholar 

  167. Dzik, J. and Ivantsov, A.Y., An asymmetric segmented organism from the Vendian of Russia and the status of the Dipleurozoa, Hist. Biol., 1999, vol. 13, pp. 255–268.

    Article  Google Scholar 

  168. Dzik, J. and Ivantsov, A.Y., Internal anatomy of a new Precambrian dickinsoniid dipleurozoan from Northern Russia, Neues Jb. Geol. Paläont. (Monatshefte), 2002, no. 7, pp. 385–396.

  169. Dzik, J. and Krumbiegel, G., The oldest “onychophoran” Xenusion: a link connecting phyla?, Lethaia, 1989, vol. 22, no. 2, pp. 169–181. https://doi.org/10.1111/j.1502-3931.1989.tb01679.x

    Article  Google Scholar 

  170. Eckelbarger, K.J. and Chia, F.S., Morphogenesis of larval cuticle in the polychaete Phragmatopoma lapidosa. A correlated scanning and transmission electron microscopic study from egg envelope formation to larval metamorphosis, Cell. Tissue. Res., 1978, vol. 186, pp. 187–201.

    Google Scholar 

  171. Edgecombe, G.D., Giribet, G., Dunn, C.W., et al., Higher-level metazoan relationships: Recent progress and remaining questions, Org. Diversity Evol., 2011, vol. 11, pp. 151–172. https://doi.org/10.1007/s13127-011-0044-4

    Article  Google Scholar 

  172. Eeckhaut, I., Fievez, L., and Muller, M.C.M., Larval development of Myzostoma cirriferum (Myzostomida), J. Morphol., 2003, vol. 258, pp. 269–283.

    Article  Google Scholar 

  173. Elder, H.Y. and Hunter, R.D., Burrowing of Priapulus caudatus (vermes) and the significance of the direct peristaltic wave, J. Zool., London, 1980, vol. 191, pp. 333–351.

    Article  Google Scholar 

  174. Emig, C. C., Les processus de l’ontogenese, compares a ceux de la regeneration des Phoronida, Z. Morph. Tiere,1973, Bd. 75, S. 329–350.

    Article  Google Scholar 

  175. Emig, C.C., Observations et discussion sur le developpement embryonnaire des Phoronida, 1974, Z. Morph. Tiere, Bd. 77, S. 128–151.

    Article  Google Scholar 

  176. Emig, C.C., Embryology of Phoronida, Am. Zool., 1977, vol. 17, pp. 21–37.

    Article  Google Scholar 

  177. Evans, R., On the Malayan species of Onychophora. Part II. The development of Eoperipatus weldoni, Q. J. Microsc. Sci., 1901, vol. 45, pp. 41–86.

    Google Scholar 

  178. Evans, S.D., Droser, M.L., and Gehling J.G., Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata, PLoS ONE, 2017, vol. 12, no. 5, e0176874. https://doi.org/10.1371/journal.pone.0176874

  179. Fahrenbach, W.H., Spermiogenesis in the horseshoe crab, Limulus polyphemus, J. Morphol., 1973, vol. 140, pp. 31–52.

    Article  Google Scholar 

  180. Fahrenbach, W.H., Microscopic anatomy of Pycnogonida: cuticle, epidermis, and muscle, J. Morphol., 1994, vol. 222, pp. 33–48.

    Article  Google Scholar 

  181. Fedonkin, M.A., Belomorian Vendian Biota (Precambrian Non-Skeletal Fauna in the North of the Russian Platform), Tr. Geol. Inst. Akad. Nauk SSSR, 1981, vol. 342, pp. 3–100.

    Google Scholar 

  182. Fedonkin, M.A., Promorphology of the Vendian Bilateria and the Problem of the Origin of Articulata Metamery. Problems of the late Precambrian and Paleozoic, Tr. Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR, Moscow: Nauka, 1985a, no. 632, pp. 79–91.

  183. Fedonkin, M.A., Systematic description of the Vendian Metazoa, in Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie. Paleontologiya (Vendian System. Historical-Geological and Paleontilogical Substantiation. Paleontology), Moscow: Nauka, 1985b, vol. 1, pp. 70–106.

    Google Scholar 

  184. Fedonkin, M.A., Besskeletnaya fauna venda i ee mesto v evolyutsii Metazoa (Vendian Non-Skeletal Fauna and Its Place in the Metazoa Evolution), Moscow: Nauka, 1987.

    Google Scholar 

  185. Fedonkin, M.A., Metameric features in the Vendian metazoans, Ital. J. Zool., 1998, vol. 68, pp. 11–17.

    Article  Google Scholar 

  186. Fedonkin, M.A., The origin of the Metazoa in the light of the Proterozoic fossil record, Paleontol. Res., 2003, vol. 7, no. 1, pp. 9–41.

    Article  Google Scholar 

  187. Fedonkin, M.A. and Waggoner, B.M., The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism, Nature, 1997, vol. 338, pp. 868–871.

  188. Finkelstein, R. and Boncinelli, E., From fly head to mammalian forebrain: the story of otd and Otx, Trends Genet., 1994, vol. 10, pp. 310–315.

  189. Finnerty, J.R., Cnidarians reveal intermediate stages in the evolution of Hox clusters and axial complexity, Am. Zool., 2001, vol. 41, pp. 608–620.

    Google Scholar 

  190. Finnerty, J.R. and Martindale, M.Q., Homeoboxes in sea anemones (Cnidaria: Anthozoa): a PCR-based survey of Nematostella vectensis and Metridium senile, Biol. Bull., 1997, vol. 193, pp. 62–76.

    Article  Google Scholar 

  191. Finnerty, J. R., Pang, K., Burton, P., et al., Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone, Science, 2004, vol. 304, pp. 1335–1337.

    Article  Google Scholar 

  192. Finnerty, J.R., Paulson, D., Burton, P., et al., Early Evolution of a Homeobox Gene: The Parahox Gene Gsx in the Cnidaria and Bilateria, Evol. Dev., 2003, vol. 5, pp. 331–345.

    Article  Google Scholar 

  193. Fleming, M.W., Ascaris suum: role of ecdysteroids in molting, Exp. Parasitol., 1985, vol. 60, pp. 207–210.

    Article  Google Scholar 

  194. Fleming, M.W., Ecdysteroids during development in the ovine parasitic nematode, Haemonchus contortus, Comp. Biochem. Physiol., 1993, vol. 104B, pp. 653–655.

    Google Scholar 

  195. Franch-Marro, X., Martin, N., Averof, M., et al., Association of tracheal placodes with leg primordial in Drosophila and implications for the origin of insect tracheal systems, Development, 2006, vol. 133, no. 5, pp. 785–790.

    Article  Google Scholar 

  196. Freeman, G., Regional specification during embryogenesis in the inarticulate brachiopod Discinisca, Dev. Biol., 1999, vol. 209, pp. 321–339. https://doi.org/10.1006/dbio.1999.9251

    Article  Google Scholar 

  197. Fröbius A.C., Matus D.Q. and Seaver E.C. Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I, PLoS One, 2008, vol. 3, no. 12, e4004. https://doi.org/10.1371/journal.pone.0004004

  198. Fröbius, A. C. and Seaver, E. C. ParaHox gene expression in the polychaete annelid Capitella sp. I, Dev. Genes Evol., 2006, vol. 216, pp. 81–88. https://doi.org/10.1007/s00427-005-0049-0

    Article  Google Scholar 

  199. Funch, P., The chordoid larva of Symbion pandora (Cycliophora) is a modified trochophore, J. Morphol., 1996, vol. 230, pp. 231–263.

    Article  Google Scholar 

  200. Gaill, F. and Hunt, S., Tubes of deep-sea hydrothermal vent worms Riftia pachyptila (Vestimentifera) and Alvinella pompejana (Annelida), Mar. Ecol. Prog. Ser., 1986, vol. 34, pp. 267–274.

    Article  Google Scholar 

  201. Gaill, F., Persson, J., Sugiyama, J., et al., The chitin secreting system in the tubes of deep-sea hydrothermal vent worms, J. Struct. Biol., Vol., 1992a, vol. 109, pp. 116–128.

  202. Gaill, F., Shillito, B., Lechaire, J.P., et al., The chitin secreting system from deep-sea hydrothermal vent worms, Biol. Cell., 1992c, vol. 76, pp. 201–1204.

    Article  Google Scholar 

  203. Gaill, F., Voss-Foucart, M.F., Gerday, C., et al., Chitin and protein contents in the tubes of vestimentiferans from hydrothermal vents, in Advances in Chitin and Chitosan, Elsevier Applied Science, Brine, C.J., Sanford, P.A., and Zizakis, J.P., Eds., 1992b, pp. 232–236.

  204. Gangishetti, U., Veerkamp, J., Bezdan, D., et al., Grainyhead and ecdysone cooperate during differentiation of the Drosophila skin, Insect Mol. Biol., 2012, vol. 21, pp. 283–295.

    Article  Google Scholar 

  205. Garcia-Bellido, D.C., Paterson, J.R., and Edgecombe, G.D., “Cambrian” palaeoscolecids (Cycloneuralia) from Gondwana and reappraisal of species assigned to Palaeoscolex, Gondwana Res., 2013, vol. 24, no. 2, pp. 780–795.

    Article  Google Scholar 

  206. Gąsiorowski, L. and Hejnol, A., Hox gene expression during development of the phoronid Phoronopsis harmeri, EvoDevo, 2020, 11:2. https://doi.org/10.1186/s13227-020-0148-z

    Article  Google Scholar 

  207. Gegenbauer, C., Grundriss der Vergleichenden Anatomie, Leipzig: Wilhelm Engelman Verl, 1874.

    Book  Google Scholar 

  208. Gemmil, J.F., The development of the sea anemones, Metridium dianthus (Ellis) and Adamsia palliata (Bohad), Philos. Trans. R. Soc., B, 1920, vol. 290, pp. 351–375.

    Google Scholar 

  209. Gemmill, J.F., The development of the sea anemone Bolocera tuediae (Johnst.), Q. J. Microsc., 1921, vol. 65, pp. 577–587.

  210. Genikhovich G., Fried P., Prünster M.M., et al., Axis Patterning by BMPs: Cnidarian Network Reveals Evolutionary Constraints, Cell Rep. 2015 vol. 17, no. 10, pp. 1646–1654. https://doi.org/10.1016/j.celrep.2015.02.035

    Article  Google Scholar 

  211. George, J.D. and Southward, E.C., A comparative study of the Setae of Pogonophora and Polychaetous Annelida, J. Mar. Biol. Assoc. UK, 1973, vol. 53, pp. 403–424.

    Article  Google Scholar 

  212. Gerhart, S.D., A review of the biology and management of horseshoe crabs, with emphasis on florida populations, in Techn. Rep. Fish Wildlife Res. Inst., 2007, pp. 1–24.

    Google Scholar 

  213. Gilmour, T.H.J., Ciliation and function of the food-collecting and waste-rejecting organs of lophophorates, Can. J. Zool., 1978, vol. 56, no. 10, pp. 2142–2155. https://doi.org/10.1139/z78-290

    Article  Google Scholar 

  214. Gilmour, T.H.J., Food-collecting and waste-rejecting mechanisms in Glottidia pyramidata and the persistence of lingulacean inarticulate brachiopods in the fossil record, Can. J. Zool., 1981, vol. 59, pp. 1539–1547.

    Article  Google Scholar 

  215. Giraud-Guille, M.M., Fine structure of the chitin–protein system in the crab cuticle, Tissue Cell, 1984, vol. 16, pp. 75–92.

    Article  Google Scholar 

  216. Giribet, G., New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics, Ann. Rev. Ecol. Evol. Syst., 2015, vol. 45, pp. 371–395. https://doi.org/10.1007/s13127-015-0236-4

    Article  Google Scholar 

  217. Giribet, G., Dunn, C.W., Edgecombe, G.D., et al., A modern look at the Animal Tree of Life, Zootaxa, 2007, no. 1668, pp. 61–79.

  218. Giribet, G. and Edgecombe, G.D., The Arthropoda: a phylogenetic framework, in Arthropod Biology and Evolution, Minelli, A., Boxshall, G., and Fusco, G., Berlin–Heidelberg: Springer-Verlag, 2013, pp. 17–40.

  219. Giribet G. and Edgecombe G.D. The Invertebrate Tree of Life, Princeton and Oxford: Princeton Univ. Press, 2020.

    Book  Google Scholar 

  220. Glaessner, M.F., The oldest fossils from South Australia, Geol. Rundsch., 1959, vol. 47, pp. 522–531.

    Article  Google Scholar 

  221. Glaessner, M.F., Precambrian animals, Sci. Amer., 1961, vol. 204, no. 3, pp. 72–78.

  222. Glaessner, M.F., A new genus of Late Precambridian polychate worms from South Australia, Trans. R. Soc. South Austr., 1976, vol. 100, pp. 169–170.

  223. Gnatzy, W. and Romer, F., Arthropoda. Cuticle: formation, moulting and control, in Biology of the Integument, Bereiter-Hahn, J., Matoltsy, A.G., and Richards, K.S., Eds., Berlin: Springer Verlag, 1984, vol. 1, pp. 638–684.

  224. Goette, A., Untersuchungen zur Entwicklungsgeschichte der Würmer. II. Rhabditis nigrovenosa, Leipzig, 1882.

  225. Gonzalez, P., Uhlinger, K.R., and Lowe, C.J., The adult body plan of indirect developing hemichordates develops by adding a hox-patterned trunk to an anterior larval territory, Curr. Biol., 2016, vol. 27, pp. 1–9.

    Google Scholar 

  226. Goto, S. and Hayashi, S., Specification of the embryonic limb primordium by graded activity of decapentaplegic, Development, 1997, vol. 124, pp. 125–132.

    Article  Google Scholar 

  227. Gould, S.J., Wonderful Life: the Burgess Shale and the Nature of History, New York: W.W. Norton, 1989.

    Google Scholar 

  228. Gray, J. and Lissmann, H.W., The locomotion of nematodes, J. Exp. Biol., 1964, vol. 41, pp. 135–154.

    Article  Google Scholar 

  229. Greven, H. and Peters, W., Localization of chitin in the cuticle of Tardigrada using wheat germ agglutinin-gold conjugate as a specific electron-dense marker, Tissue Cell, 1986, vol. 18, pp. 297–304.

    Article  Google Scholar 

  230. Gupta, A.P., Morphogenetic hormones and their glands in arthropods: evolutionary aspects, in Morphogenetic Hormones of Arthropods, Gupta, A.P., Ed., New Brunswick: Rutgers Univ. Press, 1990, pp. 1–34.

  231. Hackman, R.H. and Goldberg, M., Peripatus: its affinities and its cuticle, Science, 1975, vol. 190, pp. 582–583.

    Article  Google Scholar 

  232. Hackman, R.H., Arthropoda. Cuticle: biochemistry, in Biology of the Integument, Bereiter-Hahn, J., Matoltsy, A.G., and Richards, K.S., Eds., Berlin: Springer Verlag, 1984, vol. 1, pp. 583–610.

    Google Scholar 

  233. Halanych, K. M., Suspension feeding by the Lophophore-like apparatus of the Pterobranch Hemichordate Rhabdopleura normani, Biol. Bull., 1993, vol. 185, pp. 417–427. https://doi.org/10.2307/1542482

    Article  Google Scholar 

  234. Halanych, K.M., The new view of animal phylogeny, Ann. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 229–256.

    Article  Google Scholar 

  235. Halanych, K.M. and Passamaneck, Y., A brief review of metazoan phylogeny and future prospects in Hox research, Am. Zool., 2001, vol. 41, pp. 629–639.

  236. Hamilton, K.G.A., The insect wing. Part 1. Origin and development of wings from notal lobes, J. Kansas. Entomol. Soc., 1971, vol. 44, pp. 421–433.

  237. Hammond, R., The hydraulic system in a burrowing worm Priapulus caudatus, J. Zool. London, 1980, vol. 192, pp. 489–499.

    Article  Google Scholar 

  238. Han, J., Liu, J., Zhang, Z., et al., Trunk ornament on the palaeoscolecid worms Cricocosmia and Tabelliscolex from the Early Cambrian Chengjiang deposits of China, Acta Palaeontol. Polon., 2007, vol. 52, no. 2, pp. 423–431.

    Google Scholar 

  239. Harada, Y., Okai, N., Taguchi, S., et al., Developmental expression of the hemichordate otx ortholog, Mech. Dev., 2000, vol. 91, pp. 337–339.

    Article  Google Scholar 

  240. Harada, Y., Okai, N., Taguchi, S., et al., Embryonic expression of a hemichordate distal-less gene, Zool. Sci., 2001, vol. 18, pp. 57–61.

    Article  Google Scholar 

  241. Harrington, H.J., General description of the Trilobita, in Treatise on Invertebrate Paleontology, Moore, R.C., Ed., Lawrence: Geol. Soc. America, Univ. Kansas Press, 1959, pp. 038–0117.

  242. Harris, J.E. and Crofton, H.D., Structure and function in the nematodes. Internal pressure and cuticular structures in Ascaris, J. Exp. Biol., 1957, vol. 34, pp. 116–130.

    Article  Google Scholar 

  243. Hart, M.W., Particle captures and the method of suspension feeding by echinoderm larvae, Biol. Bull., 1991, vol. 180, pp. 12–27. https://doi.org/10.2307/1542425

    Article  Google Scholar 

  244. Harvey, T.H., Dong, X., and Donoghue, P.C., Are palaeoscolecids ancestral ecdysozoans? Evol. Dev., 2010, vol. 12, no. 2, pp. 177–200. https://doi.org/10.1111/j.1525-142X.2010.00403.x

    Article  Google Scholar 

  245. Hasenfuss, I., The evolutionary pathway to insect flight—a tentative reconstruction, Arthropod Syst. Phyl., 2008, vol. 66, no. 1, pp. 19–35.

    Google Scholar 

  246. Haug T.G., Maas A., Haug C., et al., Evolution of crustacean appendages, in Functional Morphology and Diversity, Watling, L. and Thiel, V., Eds., Oxford: Oxford Univ. Press, 2012, pp. 34–73.

  247. Hausen, H., Comparative structure of the epidermis in polychaetes (Annelida), Hydrobiologia, 2005, vol. 535(536), pp. 25–35.

    Google Scholar 

  248. Hayward, D.C., Grasso, L.C., Saint, R., et al., The organizer in evolution–gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora, Dev. Biol., 2015, vol. 399, pp. 337–347.

    Article  Google Scholar 

  249. He, S., Viso, F., Chen, Ch-Y., et al., An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis, Science, 2018, vol. 361, no. 6409, pp. 1377–1380. https://doi.org/10.1126/science.aar8384

    Article  Google Scholar 

  250. Heftman, T. and Mosettig, E., Biochemestry of Steroids, New York: Reinolds Publ. Co, 1960.

    Google Scholar 

  251. Hejnol, A. and Lowe, C.J., Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution, Philos. Trans. R. Soc., B, 2015, 370:20150045. https://doi.org/10.1098/rstb.2015.0045

    Article  Google Scholar 

  252. Hejnol, A. and Martindale, M.Q., Acoel development supports a simple planula-like urbilaterian, Philos. Trans. R. Soc., B, 2008, vol. 363, pp.1493–1501. https://doi.org/10.1098/rstb.2007.2239

    Article  Google Scholar 

  253. Hejnol, A., Obst, M., Stamatakis, A., et al., Assessing the root of bilaterian animals with scalable phylogenomic methods, Proc. Biol. Sci., 2009, vol. 276, pp. 4261–4270. https://doi.org/10.1098/rspb.2009.0896

    Article  Google Scholar 

  254. Henderson, S.Y. and Strathmann, R.R., Contrasting scaling of ciliary filters in swimming larvae and sessile adults of fan worms (Annelida: Polychaeta), Invertebr. Biol., 2000, vol. 119, pp. 58–66. https://doi.org/10.1111/j.1744-7410.2000.tb00174.x

    Article  Google Scholar 

  255. Hermann K., Untersuchungen uber Morphologie, Physiologie, und Okologie der Metamorphose von Phoronis muelleri (Phoronida), Zool. Jb. Anat. Ontog. Tiere., 1976, Bd. 95, S. 354–426.

    Google Scholar 

  256. Heymons, R., Die entwicklungsgeschichte der Scolopender, Bibl. Zool., Stuttgart, vol. 13, pp. 1–244.

  257. Hirth, F., Kammermeier, L., Frei, E., et al., An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila, Development, 2003, vol. 130, pp. 2365–2373. https://doi.org/10.1242/dev.00438

    Article  Google Scholar 

  258. Holland, N.D. and Nealson, K.H., The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms, Acta Zool., 1978, vol. 59, pp. 169–185.

    Article  Google Scholar 

  259. Hong, S.Y., Development of epipods and gills in some pagurids and brachyurans, J. Nat. Hist., 1988, vol. 22, pp. 1005–1040.

    Article  Google Scholar 

  260. Horn, D.H.S., Wilkie, J.S., and Thomson J.A., Isolation of b-ecdysone (20-hydroxyecdysone) from the parasitic nematode Ascaris lumbricoides, Experientia, 1974, vol. 30, pp. 1109–1110.

    Article  Google Scholar 

  261. Hou X.-G. and Bergström, J., The arthropods of the Lower Cambrian Chengjiang fauna, with relationships and evolutionary significance, in The Early Evolution of Metazoan and the Significance of Problematic Taxa, Simonetta, A.M and Conway Morris, S., Eds., Cambridge: Cambridge Univ. Press, 1991, pp. 179–187.

  262. Hou, S., Shu, D., Zhang, X., et al., Notes on Cambrian bradoriids from Shaanxi, Yunnan, Sichuan, Guizhou, Hubei and Guangdong, J. Northwest Univ., 1983, vol. 13, pp. 56–106.

    Google Scholar 

  263. Hou, X., Two new arthropods from lower Cambrian, Chengjiang, Easter Yunnan, Acta Palaeontol. Sin., 1987, vol. 26, no. 3, pp. 236–256.

    Google Scholar 

  264. Hou, X.-G., Aldridge, R.J., Bergström, J., et al., The Cambrian Fossils of Chengjiang, China: the Flowering of Early Animal Life, Oxford: Blackwell Publ., 2004.

    Google Scholar 

  265. Hou, X.-G., Aldridge, R., Bergström, J., et al., The Cambrian Fossils of Chengjiang, China: the Flowering of Early Animal Life, 2nd ed., Wiley-Blackwell, 2017. https://doi.org/10.1002/9781118896372

  266. Hou, X.-G. and Bergström, J., Arthropods of the lower Cambrian Chengjiang fauna, Fossils Strata, 1997, vol. 45, pp. 1–116.

    Google Scholar 

  267. Hou, X.-G. and Bergström, J., Cambrian lobopodians—ancestors of extant onychophorans? Zool. J. Linn. Soc., 1995, vol. 114, pp. 3–19.

    Article  Google Scholar 

  268. Hou, X.-G. and Bergström, J., Palaeoscolecid worms maybe nematomorphs rather than annelids, Lethaia, 2004, vol. 27, pp. 11–17.

    Google Scholar 

  269. Hou, X. and Bergstrom, J., Dinocaridids: anomalous arthropods or arthropod-like worms?, in Originations, Radiations and Biodiversity Changes: Evidences from the Chinese Fossil Record, Jiayu, R., Zongjie, F., Zhanghe, Z., Eds., Beijing: Sci. Press, 2006, pp. 139–158.

    Google Scholar 

  270. Hou, X.-G., Bergström, J., and Ahlberg, P., Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of southwest China, GFF, 1995, pp. 163–183.

  271. Hou, X.-G. and Chen, J.-Y., Early Cambrian arthropod–annelid intermediate sea animal, Luolishania gen. nov. from Chengjiang, Yunnan, Acta Palaeontol. Sin., 1989, vol. 28, no. 2, pp. 207–213.

    Google Scholar 

  272. Hou, X.-G., Ma, X.-Y., Zhao, J., et al., The lobopodian Paucipodia inermis from the lower Cambrian Chengjiang fauna, Yunnan, China, Lethaia, 2004, vol. 37, no. 3, pp. 235–244.

    Article  Google Scholar 

  273. Hou, X.-G., Siveter, D. J., Williams, M., et al., Appendages of the arthropod Kunmingella from the Early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda, Philos. Trans. R. Soc., B, 1996. vol. B351, pp. 1131–1145. https://doi.org/10.1098/rstb.1996.0098

    Article  Google Scholar 

  274. Hou, X.-G., Williams, M., Siveter, D.J., et al., Soft-part anatomy of the Early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida, Philos. Trans. R. Soc., B, 2010, vol. 277, pp. 1835–1841.

    Google Scholar 

  275. Howard, R., Hou, X.-G., Edgecombe, G., et al., A tube-dwelling early Cambrian lobopodian, Curr. Biol., 2020, vol. 30, no. 8, pp. 1529–1536. https://doi.org/10.1016/j.cub.2020.01.075

    Article  Google Scholar 

  276. Hu, S., Taphonomy and palaeoecology of the early Cambrian Chengjiang biota from Eastern Yunnan, China, Berliner Paläobiol. Abh., 2005, vol. 7, pp. 1–197.

    Google Scholar 

  277. Hu, S., Steiner, M., Zhu, M., et al., A new priapulid assemblage from the early Cambrian Guanshan fossil Lagerstätte of SW China, Bull. Geosci., 2012, vol. 87, no. 1, pp. 93–106.

    Article  Google Scholar 

  278. Huang, D., Chen, J., Zhu, M., et al., The burrow dwelling behavior and locomotion of palaeoscolecidian worms: new fossil evidence from the Cambrian Chengjiang fauna, Palaeogeogr., Palaeoclimat., Palaeoecol., 2014, vol. 398, pp. 154–164. https://doi.org/10.1016/j.palaeo.2013.11.004

    Article  Google Scholar 

  279. Hunter, R.D. and Elder, H.Y., Burrowing dynamics and energy cost of transport in the soft-bodied marine invertebrates Polyphysia crassa and Priapulus caudatus, J. Zool. London, 1989, vol. 218, pp. 209–222. https://doi.org/10.1111/j.1469-7998.1989.tb02533.x

    Article  Google Scholar 

  280. Hunter, R., Moss, V.A., and Elder, H.J., Image analysis of the burrowing mechanisms of Polyphysia crassa (Annelida, Polychaeta) and Priapulus caudatus (priapulida), J. Zool. London, 1983, vol. 199, pp. 305–323.

    Article  Google Scholar 

  281. Huxley, T.H., L’ecrevisse. Introduction a l’etude de la zoologie, Bibl. Sci. Int., 1880, vol. 36, pp. 1–260.

    Google Scholar 

  282. Hyman, L.H., The Invertebrates, vol. 1: Protozoa Through Ctenophora, New York: McGraw-Hill, 1940.

    Google Scholar 

  283. Ikeda, I., Observation on the development, structure and metamorphosis of Actinotrocha, J. Col. Sc. Imp. Univ. Tokyo, 1901, vol. 13, pp. 507–591.

    Google Scholar 

  284. Irvine, S.Q. and Martindale, M.Q., Expression patterns of anterior hox genes in the polychaete Chaetopterus: correlation with morphological boundaries, Dev. Biol., 2000, vol. 217, pp. 333–351.

    Article  Google Scholar 

  285. Ivanov, A.V. and Monchadskii, A.S., Polyanskii Yu.I. et al. Bol’shoi praktikum po zoologii bespozvonochnykh. Chast’ 2. Kol’chatye chervi, Chlenistonogie (Large Practicum on Invertebrate Zoology. Part 2. Annelids, Arthropods), Moscow: Vyssh. Shkola, 1983.

  286. Ivanov, P.P., Embryonic development of Scolopendra in connection with embryology and morphology of Tracheata, Izv. Akad. Nauk SSSR, Ser. Biol., 1940, pp. 831–861.

  287. Ivanov, P.P., Rukovodstvo po obshchei i sravnitel’noi embriologii (Guide to General and Comparative Embryology), Leningrad: Uchpedgiz, 1945.

  288. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh: trokhofornye, shchupal’tsevye, shchetinkochelyustnye, pogonofory (Comparative Embryology of Invertebrates: Trochophores, Tentaculates, Chaetognaths, and Pogonophores), Moscow: Nauka, 1977a.

    Google Scholar 

  289. Ivanova-Kazas, O.M., Analysis of early development of Crustacea, Biol. Morya, 1977b, vol. 1, pp. 1–12.

    Google Scholar 

  290. Ivanova-Kazas, O.M., Analysis of cleavage of nematodes and gastrotrichs, Zool. Zh., 1979a, vol. 58, no. 12, pp. 1765–1777.

    Google Scholar 

  291. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. Tom 5. Chlenistonogie (Comparative Embryology of Invertebrates. Volume 5. Arthropods), Moscow: Nauka, 1979b.

  292. Ivanova-Kazas, O.M., Phylogenetic significance of spiral cleavage, Biol. Morya, 1981a, vol. 5, pp. 3–14.

    Google Scholar 

  293. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. Tom 6. Nepolnousye (Comparative Embryology of Invertebrates. Vol. 6. Atelocerata), Moscow: Nauka, 1981b.

  294. Ivantsov, A.Yu., Vendia and other Precambrian “arthropods”, Paleontol. J., 2001, vol. 35, no. 4, pp. 335–343.

  295. Ivantsov, A.Y., Feeding traces of Proarticulata—the Vendian Metazoa, Paleontol. J., 2011, vol. 45, no. 3, pp. 237–248.

  296. Ivantsov, A.Y. and Wrona, R., Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of Eastern Siberia, Acta Geol. Polon., 2004, vol. 4, no. 1, pp. 1–22.

    Google Scholar 

  297. Ivantsov, Yu.A., Zakrevskaya, M.A., and Nagovitsyn, A.L., Morphology of integuments of the Precambrian animals, Proarticulata, Invert. Zool., 2019, vol. 16, no. 1, pp. 19–26.

    Article  Google Scholar 

  298. Iwanoff, P.P., Die embryonale entwicklung von Limulus molluccanus, Zool. Jb. Anat. Ont. Tiere, 1933, vol. 56, pp. 163–348.

    Google Scholar 

  299. Jägersten, G., On the early phylogeny of the Metazoa, The Bilaterogastraea-theory, Zool. Bidr. Uppsala, 1955, vol. 30, pp. 321–354.

    Google Scholar 

  300. Jägersten, G., Further remarks on the early phylogeny of the metazoan, Zool. Bidr. Uppsala, 1959, vol. 33, pp. 79–108.

    Google Scholar 

  301. Jägersten, G., Evolution of the Metazoan Life Cycle: a Comprehensive Theory, London, New-York: Acad. Press, 1972.

  302. Jenner, R.A., Higher-level crustacean phylogeny: Consensus and conflicting hypotheses, Arthropod Struct. Dev., 2010, vol. 39, pp. 143–153.

  303. Jeuniaux, CH., Principes de systematique biochemique et application a quelques problems particulieres concernant les Aschelminthes, les Polychetes et les Tardigrades, Cah. Biol. Mar., 1975, no. 16, pp. 597–612.

  304. Jeuniaux, C.H., Distribution and quantitative importance of chitin in animals, in Proc. 1st Int. Conf. on Chitin/Chitosan, MIT Sea Grant Program, Muzzarelli, R.A.A. and Pariser, R.A., Eds., Cambride, 1978, pp. 5–10.

  305. Jeuniaux, C.H., La chitine dans la regne animal, Bull. Soc. Zool. France, 1982, vol. 107, pp. 363–386.

  306. Johanssen, O.A. and Butt, F.H., Embryology of Insects and Myriapods: the Developmental History of Insects, Centipedes, and Millepedes from Egg Desposition to Hatching, New York: McGraw-Hill, 1941.

    Book  Google Scholar 

  307. Jura, C., Embryogenesis of the alimentary system of the weevil, Phyllobius glaucus, Zool. Polon., 1956, vol. 7, pp. 155–176.

    Google Scholar 

  308. Karuppaswamy, S.A., Occurrence of b-chitin in the cuticle of a pentastomid Railletiella gowrii, Experientia, 1977, no. 33, pp. 735–736.

  309. Kayal, E., Roure, B., Philippe, H. et al., Cnidarian phylogenetic relationships as revealed by mitogenomics, BMC Evol Biol., 2013, vol.13, p. 5. https://doi.org/10.1186/1471-2148-13-5

    Article  Google Scholar 

  310. Kheftman, E., Biokhimiya steroidov (Biochemistry of Steroids), Moscow, 1972.

  311. Kitakoshi, T. and Shimizu, T., An oligochaete homologue of the Brachyury gene is expressed transiently in the third quartette of micromeres, Gene Exp. Patterns, 2010, vol. 10, pp. 306–313. https://doi.org/10.1016/j.gep.2010.07.00

    Article  Google Scholar 

  312. Koch, M., Quast, B., and Bartolomaeus, T., Coeloms and nephridia in annelids and arthropods, in Deep Metazoan Phylogeny: The Backbone of the Tree of Life, Wagele, J.W., Bartolomaeus, T., Berlin/Boston: de Gruyter, 2014, pp. 173–284.

  313. Kowalevsky, A.O., Anatomiya i istoriya razvitiya Phoronis (Anatomy and the history of development of Phoronis), Mem. Saint-Petersburg’s Acad. Sci., 1867, vol. 11, pp. 1–35.

    Google Scholar 

  314. Kowalewsky, A., Embryonalentwicklung der musciden, Biol. Centralbl., 1886, vol. 6, pp. 49–54.

    Google Scholar 

  315. Kramp, P. L., The medusae of the tropical west coast of Africa, Atlantide Report, 1955, vol. 3, pp. 239–324.

    Google Scholar 

  316. Kramp, P. L., The Hydromedusae of the Atlantic Ocean and adjacent waters, Dana Report, 1959, vol. 46, pp. 1–283.

    Google Scholar 

  317. Kramp, P. L., Synopsis of the medusae of the world, J. Mar. Biol. Ass. U. K., 1961, vol. 40, pp. 1–469.

    Article  Google Scholar 

  318. Kramp, P. L., The hydromedusae of the Pacific and Indian oceans. Sections II and III, Dana Report, 1968, vol. 72, pp. 1–200.

    Google Scholar 

  319. Krishnan, G., Chemical nature of the cuticle and its mode of hardening in Eoperipatus weldoni, Acta Histochem., 1970, vol. 37, pp. 1–17.

    Google Scholar 

  320. Kuhn, A., Vorlesungen uber Entwicklungsphysiologie, Berlin: Springer, 1965.

    Book  Google Scholar 

  321. Kukalová, J., Revisional study of the order Palaeodictyoptera in the Upper Carboniferous shales of commentry, France. Part III, Psyche, 1970, vol. 77, pp. 1–44.

    Article  Google Scholar 

  322. Kukalová-Peck, J., Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record, J. Morphol., 1978, vol. 156, pp. 53–126.

    Article  Google Scholar 

  323. Kukalová-Peck, J., Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of Pterygote insects (Insecta, Ephemerida), Can. J. Zool., 1985, vol. 63, pp. 933–955.

    Article  Google Scholar 

  324. Kukalová-Peck, J., New Carboniferous Diplura, Monura, and Thysanura, the Hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta), Can. J. Zool., 1987, vol. 65, pp. 2327–2345.

    Article  Google Scholar 

  325. Kukalová-Peck, J., Origin of the insect wing and wing articulation from the arthropodan leg, Can. J. Zool., 1983, vol. 61, pp. 1618–1669.

    Article  Google Scholar 

  326. Kukalova-Peck, J., Fossil history and the evolution of hexapod structures. The insects of Australia, in A Textbook for Students and Research Workers. Second Edition, Melbourne: Melbourne Univ. Press, 1991, vol. 1, pp. 141–179.

    Google Scholar 

  327. Kukalová-Peck, J., The “Uniramia” do not exist: the ground plan of the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta: Paleodictyopteroidea), Can. J. Zool., 1992, vol. 70, pp. 236–255.

    Article  Google Scholar 

  328. Kukalová-Peck J. Arthropod phylogeny and “basal” morphological structures, in Arthropod Relationships, Fortey, R.A., Thomas, R.H., London: Chapman & Hall, 1998, pp. 249–268.

  329. Kukalová-Peck, J. and Lawrence, J.F., Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters, Eur. J. Entomol., 2004, vol. 101, pp. 95–144.

    Article  Google Scholar 

  330. Kukalová-Peck, J., Phylogeny of higher taxa in insecta: finding synapomorphies in the extant fauna and separating them from the homoplasies, Evol. Biol., 2008, vol. 35, pp. 4–51.

    Article  Google Scholar 

  331. Kukalová-Peck, J., Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera), Palaeodiversity, 2009, vol. 2, pp. 169–198.

    Google Scholar 

  332. Kukalová-Peck, J., Peters, J.G., and Soldan, T., Homologization of the anterior articular plate in the wing base of the Ephemeroptera and Odonatoptera, Aquat. Insects, 2009, vol. 31, pp. 459–470.

    Article  Google Scholar 

  333. Kükenthal, W. Coelenterata, in Krumbach T. (Ed.), Handbuch der Zoologie: eine Naturgeschichte der Stämme des Tierreiches, vol. 1, Protozoa, Porifera, Coelenterata, Mesozoa, Berlin: Walter de Gruyter, 1923.

  334. Kulakova, M., Bakalenko, N., Novikova, E., et al., Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa), Dev. Genes Evol., 2007, vol. 217, pp. 39–54. https://doi.org/10.1007/s00427-006-0119-y

    Article  Google Scholar 

  335. Kuratani, S., Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty, J. Anat., 2004, vol. 205, pp. 335–347.

    Article  Google Scholar 

  336. Kuratani, S., Developmental studies of the lamprey and hierarchica evolutionary steps towards the acquisition of the jaw, J. Anat., 2005, vol. 207, pp. 489–499.

    Article  Google Scholar 

  337. Kuratani, S., Kuraku, S., and Murakami, Y., Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics, Genesis, 2002, vol. 34, pp. 175–183.

    Article  Google Scholar 

  338. Kusserow, A., Pang, K., Sturm, C., et al., Unexpected complexity of the Wnt gene family in a sea anemone, Nature, 2005, vol. 433, pp. 156–160.

    Article  Google Scholar 

  339. Kuzmina, T.V. and Malakhov, V.V., Structure of the Brachiopod Lophophore, Paleontol. J., 2007, vol. 41, no. 5, pp. 520–536. https://doi.org/10.1134/S0031030107050073

  340. Kuzmina, T.V., Malakhov, V.V. and Temereva, E.N., Larval development of the brachiopod Coptothyris grayi (Davidson, 1852) (Terebratulida: Rhynchonelliformea) and the evolution of brachiopod life cycles, Invertebr. Zool., 2019, vol. 16, no. 1, pp. 27–40. https://doi.org/10.15298/invertzool.16.1.04

  341. Lacalli, T. C., Ciliary bands in echinoderm larvae: Evidence for structural homologies and a common plan, Acta Zool., 1993, vol. 74, pp. 127–133.

    Article  Google Scholar 

  342. Lacalli, T. C. and Gilmour, T. H. J., Locomotory and feeding effectors of the tornaria larva of Balanoglossus biminiensis, 2001, Acta Zool. (Stockholm), vol. 82, pp. 117–126. https://doi.org/10.1046/J.1463-6395.2001.00075.X

    Book  Google Scholar 

  343. Lacalli, T. C., Gilmour, T. H. J. and West, J. E., Ciliary band innervation in the bipinnaria larva of Pisaster ochraceus, Phil. Trans. R. Soc., 1990, vol. B330, pp. 371–390. https://doi.org/10.1098/rstb.1990.0206

    Article  Google Scholar 

  344. Lameere, A., Precis de Zoologie, Liege: Desoer, 1932, vol. 2.

    Google Scholar 

  345. Lamsdell, J.C., Stein, M., and Selden, P.A., Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods, Naturwissenschaften, 2013, vol. 100, no. 9, pp. 811–825.

    Article  Google Scholar 

  346. Laumer, C.E., Fernandez, R., Lemer, S., et al., Revisiting Metazoan phylogeny with genomic sampling of all phyla, Proc. R. Soc., 2019, B286: 20190831. https://doi.org/10.1098/rspb.2019.0831

  347. Lauri, A., Brunet, T., Handberg-Thorsager, M., et al., Development of the annelid axochord: Insights into notochord evolution, Science, 2014, no. 345, pp. 1365–1368. https://doi.org/10.1126/science

  348. Leloup, E., Coelentérés, Faune de Belgique, Bruxelles: Inst. R. Sci. Nat. Belg., 1952.

    Google Scholar 

  349. Lemburg, C., Electron microscopical localization of chitin in the cuticle of Halicryptus spinulosus and Priapulus caudatus (Priapulida) using gold-labelled wheat germ agglutinin: phylogenetic implications for the evolution of the cuticle within the Nemathelminthes, Zoomorphology, 1998, vol. 118, pp. 137–158. https://doi.org/10.1007/s004350050064

    Article  Google Scholar 

  350. Li Y., Shen X.-X., Evans B., et al., Rooting the Animal Tree of Life, Mol. Biol. Evol., 2021, vol. 38, no. 10, pp. 4322–4333. https://doi.org/10.1093/molbev/msab170

    Article  Google Scholar 

  351. Lichtneckert, R. and Reichert, H., Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development, Heredity, 2005, vol. 94, pp. 465–477.

    Article  Google Scholar 

  352. Lignau, N., Embryonalentwicklung des Polydesmus abchasius, Zool. Anz., 1911, vol. 37, pp. 144–153.

    Google Scholar 

  353. Lignau, N.G., The history of the embryonic development of Polydesmus abchasius, Zap. Novoross. Obshch. Estestvoisp., 1912, vol. 38, pp. 57–303.

    Google Scholar 

  354. Linz, D.M. and Tomoyasu, Y., Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium, Proc. Natl. Acad. Sci. USA, 2018, vol. 115(4), pp. E658–E667. https://doi.org/10.1073/pnas.1711128115

    Article  Google Scholar 

  355. Liu, J. and Dunlop, J.A., Cambrian lobopodians: a review of recent progress in our understanding of their morphology and evolution, Palaeogeogr., Palaeoclimat., Palaeoecol., 2014, vol. 398, pp. 4–15. https://doi.org/10.1016/j.palaeo.2013.06.008

    Article  Google Scholar 

  356. Liu, J., Shu, D., Han, J., et al., A large xenusiid lobopod with complex appendages from the Lower Cambrian Chengjiang Lagerstätte, Acta Palaeontol. Polon., 2006, vol. 51, pp. 215–222.

    Google Scholar 

  357. Liu, J.-N., Shu, D.-G., Han, J., et al., Morpho-anatomy of the lobopod ~Magadictyon~ [sic] cf. ~haikouensis~ from the Early Cambrian Chengjiang Lagerstätte, South China, Acta Zool., 2007, vol. 88, pp. 279–288. https://doi.org/10.1111/j.1463-6395.2007.00281.x

    Article  Google Scholar 

  358. Liu, J., Shu, D., Han, J., et al., Origin, diversification, and relationships of Cambrian lobopods, Gondwana Res., 2008, vol. 14, pp. 277–283.

    Article  Google Scholar 

  359. Liu, J., Shu, D.-G., Han, J., et al., Comparative study of Cambrian lobopods Miraluolishania and “Luolishania”, Chinese Sci. Bull., 2008a, vol. 53, no. 1, pp. 87–93. https://doi.org/10.1007/s11434-007-0428-1

    Article  Google Scholar 

  360. Liu, J.-N., Shu, D.-G., Han, J., et al., Origin, diversification, and relationships of Cambrian lobopods, Gondwana Res., 2008b, vol. 14, nos. 1–2, pp. 277–283. https://doi.org/10.1016/j.gr.2007.10.001

    Article  Google Scholar 

  361. Liu, J-N., Shu, D.-G., Han, J., et al., The lobopod “Onychodictyon” from the lower Cambrian Chengjiang Lagerstätte revisited, Acta Palaeontol. Polon., 2008c, vol. 53, no. 2, pp. 285–292. https://doi.org/10.4202/app.2008.0209

    Article  Google Scholar 

  362. Liu, Y., Xiao, S., and Shao, T., The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans, Evol. Dev., 2014, vol. 16, no. 3, pp. 155–165. https://doi.org/10.1111/ede.12076

    Article  Google Scholar 

  363. Liu, X., Zhang J., and Yan-Zhu, K., Chitin in arthropods: biosynthesis, modification, and metabolism, in Targeting Chitin-Containing Organisms, Advances, Yang, Q. and Fukamizo T., Eds., Exp. Med. Biol., 2019, no. 1142. https://doi.org/10.1007/978-981-13-7318-3_9

  364. Locke, M., The role of plasma membrane plaques and Golgi complex vesicles in cuticle deposition during the molt/intermolt cycle, in The Insect Integument, Hepburn, H.R., Ed., Elsevier/North Holland, Amsterdam, 1976, pp. 237–258.

    Google Scholar 

  365. Locke, M., Envelopes at cell surfaces–a confused area of research of general importance, in Parasites–Their World and Ours, Mettrick, D.F. and Desser, S.S., Eds., Proc. 5th Int. Congr. Parasitol., Amsterdam: Elsevier Biomed Press, 1982, pp. 73–88.

  366. Locke, M., Chapter 27. Epidermal cells, in Biology of Integument. Vol. 1. Invertebrates. Arthropoda, Bereiter-Hahn, J., Matolsky, A.G., and Richards, R.S., Eds., Berlin: Springer, 1984, pp. 502–522.

  367. Locke, M., A structural analysis of post-embryonic development, in Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Kerkut, G.A. and Gilbert, G.A., Eds. vol. 2, Oxford, New York: Pergamon Press, 1985, pp. 87–149.

    Google Scholar 

  368. Locke, M., Insect epidermal cells, in Physiology of the Insect Epidermis, Binnington, K. and Retnakaran, A., Ed., Melbourne: CRISCO Publ., 1991, pp. 1–22.

    Google Scholar 

  369. Locke, M., The Wigglesworth lecture: insects for studying fundamental problems in biology, J. Insect Physiol., 2001, vol. 47, pp. 495–507.

    Article  Google Scholar 

  370. Locke, M., Surface membranes, Golgi complexes, and vacuolar systems, Ann. Rev. Entomol., 2003, vol. 48, pp. 1–27.

    Article  Google Scholar 

  371. Locke, M. and Huie, P., Apolysis and the turnover of plasma membrane plaques during cuticle formation in an insect, Tissue Cell, 1979, vol. 11(2), pp. 277–291. https://doi.org/10.1016/0040-8166(79)90042-9

    Article  Google Scholar 

  372. Lotmar, W. and Picken, L.E.R., A new crystallographic modification of chitin and its distribution, Experientia, 1950, vol. 6(2), pp. 58–59.

    Article  Google Scholar 

  373. Lowe, C.J., Clarke, D.N., Medeiros, D.M., et al., The deuterostome context of chordate origins, Nature, 2015, vol. 520, pp. 456–465. https://doi.org/10.1038/nature14434

    Article  Google Scholar 

  374. Lowe, C.J., Wu, M., Salic, A., et al., Anteroposterior patterning in hemichordates and the origins of the chordate nervous system, Cell, 2003, vol. 113, no. 3, pp. 853–865.

    Article  Google Scholar 

  375. Lüter, C., The origin of the coelom in Brachiopoda and its phylogenetic significance, Zoomorphology, 2000, vol. 120, pp. 15–28. https://doi.org/10.1007/s004359900019

    Article  Google Scholar 

  376. Lüter, C., Anatomy, in Treatise on Invertebrate Paleontology, Part H, Revised, Brachiopoda, 2007, vol. 6, pp. 2321–2395. https://doi.org/10.17161/dt.v0i0.5515

    Book  Google Scholar 

  377. Ma, X., Aldridge, R.J., Siveter, D.J., et al., A new exceptionally preserved Cambrian priapulid from the Chengjiang Lagerstätte, J. Paleontol., 2014, vol. 88, no. 2, pp. 371–384. https://doi.org/10.1666/13-082

    Article  Google Scholar 

  378. Ma, X., Edgecombe, G., Legg, D., et al., The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis, J. Syst. Palaeontol., 2013, vol. 12, no. 4, pp. 445–457. https://doi.org/10.1080/14772019.2013.770418

    Article  Google Scholar 

  379. Ma, X.-Y., Hou, X.-G., and Baines, D., Phylogeny and evolutionary significance of vermiform animals from the Early Cambrian Chengjiang Lagerstätte, Sci. China: Earth Sci., 2010, vol. 53, no. 1, pp. 1774–1783. https://doi.org/10.1666/13-082

    Article  Google Scholar 

  380. Maas, A., Huang, D., Chen, J., et al., Maotianshan-shale nemathelminths—morphology, biology, and the phylogeny of Nemathelminthes, Palaeogeogr., Palaeoclimat., Palaeoecol., 2007, vol. 254, nos. 1–2, pp. 288–306.

    Article  Google Scholar 

  381. Maas, A., Mayer, G., Kristensen, R.M., et al., A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction, Chinese Sci. Bull., 2007, vol. 52, no. 24, pp. 3385–3392.

    Article  Google Scholar 

  382. Maas, A. and Waloszek, D., Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians–an ‘Orsten’ perspective, Zool. Anz., 2001, vol. 240, pp. 451–459.

    Article  Google Scholar 

  383. Maas, A., Waloszek, D., and Muller, K.J., Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian ‘Orsten’ of Sweden, Fossils Strata, 2003, vol. 49, pp. 1–238.

    Google Scholar 

  384. Maggenti, A.R., General Nematology, Springer Verlag, 1981.

    Book  Google Scholar 

  385. Malakhov, V.V., Distribution of solo cleavage (mono-ray cleavage) in invertebrates, Zh. Obshch. Biol., 1976, vol. 37, no. 3, pp. 387–403.

    Google Scholar 

  386. Malakhov, V.V., Nematody: stroenie, razvitie, sistema i filogeniya (Nematodes: Structure, Development, System, and Phylogeny), Moscow: Nauka, 1986.

  387. Malakhov, V.V., Nematodes, Structure, Development, Classification, Phylogeny (ed. W. by Duane Hope), Washington, DC and London: Smithsonian Inst. Press, 1994.

  388. Malakhov, V.V., Embryological and histological peculiarities of the order Enoplida, a primitive group of nematodes, Russ. J. Nematol., 1998, vol. 6, pp. 41–46.

    Google Scholar 

  389. Malakhov, V.V., Origin of bilaterally symmetrical animals (Bilateria), Zh. Obshch. Biol., 2004a, vol. 65, no. 5, pp. 371–388.

    Google Scholar 

  390. Malakhov, V.V., A new idea on the origin of Bilateria, Priroda, 2004b, no. 6, pp. 31–39.

  391. Malakhov, V.V., New ideas on the origin of bilateral animals, Russ. J. Marine Biol., 2004c, vol. 30, suppl. 1, pp. 22–33.

    Article  Google Scholar 

  392. Malakhov, V.V., Revolution in zoology: a new system of Bilateria, Priroda, 2009, no. 3, pp. 40–54.

  393. Malakhov, V.V., A new system of Bilateria, Herald Russ. Acad. Sci., 2010, vol. 80, no. 1, pp. 29–41. https://doi.org/10.1134/S1019331610010041

    Article  Google Scholar 

  394. Malakhov, V.V., A revolution in zoology: new concepts of the metazoan system and phylogeny, Herald Russ. Acad. Sci., 2013, vol. 83, no. 2, pp. 123–127. https://doi.org/10.1134/S1019331613020044

    Article  Google Scholar 

  395. Malakhov, V.V., Symmetry and the Tentacular Apparatus in Cnidaria, Russ. J. Mar. Biol., 2016, vol. 42, no. 4, pp. 287–298. https://doi.org/10.1134/S1063074016040064

    Article  Google Scholar 

  396. Malakhov, V.V. and Adrianov, A.V., Golovokhobotnyye (Cephalorhyncha)—novyi tip zhivotnogo tsarstva (Cephalorhyncha—a New Phylum of Animal Kingdom), Moscow: KMK Scientific Press, 1995.

  397. Malakhov, V.V. and Adrianov, A.V., Cephalorhyncha—a new phylum of animal kingdom, Priroda, 1997, no. 3. pp. 3–17.

  398. Malakhov, V.V. and Akimushkina, M.I., Embryonic development of the free-living marine nematode Enoplus brevis, Zool. Zh., 1976, vol. 55, no. 12, pp. 1788–1799.

    Google Scholar 

  399. Malakhov, V.V. and Bogomolova, E.V., A new idea of the structure and origin of the body cavity of multicellular organisms. Part 2, Priroda, 2016, no. 12, pp. 12–27.

  400. Malakhov, V.V., Bogomolova, E.V., Kuzmina, T.V., et al., Evolution of Metazoa life cycles and the origin of pelagic larvae, Russ. J. Develop. Biol., 2019, vol. 50, no. 6, pp. 303–316. https://doi.org/10.1134/S0475145019060041

    Article  Google Scholar 

  401. Malakhov, V.V. and Cherdantsev, V.G., Embryonic development of the free-living marine nematode Pontonema vulgare, Zool. Zh., 1975, vol. 54, no. 2, pp. 165–174.

    Google Scholar 

  402. Malakhov, V.V. and Kuzmina, T.V., Metameric Origin of Lateral Mesenteries in Brachiopoda, Dokl. BIol. Sci., 2006, vol. 409, pp. 340–342. https://doi.org/10.1134/S0012496606040223

    Article  Google Scholar 

  403. Malakhov, V.V. and Temereva, E.N., Embryonic development of the phoronid Phoronis ijimai (Lophophorata, Phoronida): Two sources of the coelomic mesoderm, Dokl. Biol. Sci., 1999, vol. 365, pp. 166–168.

    Google Scholar 

  404. Malakhov, V.V. and Temereva, E.N., Embryonic development of the Phoronid Phoronis ijimai, Russ. J. Mar. Biol., 2000, vol. 26, no. 6, pp. 412–421.https://doi.org/10.1016/j.ympev.2003.07.013

  405. Mallatt, J.M, Garey, J.R., and Shultz, J.W., Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin, Mol. Phylogenet. Evol., 2004, vol. 31, no. 1, pp. 178–191. https://doi.org/10.1023/A:1009494621160

  406. Mansuy, H., Etude géologique du Yunnan Oriental. Pt. 2, Paléontologie, Mém. Serv. Géol. de l’Indochine, 1912, no. 1, pp. 1–23.

  407. Manton, S.M., Studies on the Onychophora VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the Arthropoda, Philos. Trans. R. Soc., London, 1949, vol. 233, pp. 483–580.

    Google Scholar 

  408. Mao, C.-A., Wikramanayake, A.H., Gan, L., et al., Altering cell fates in sea urchin embryos by overexpressing SpOtx, an orthodenticle-related protein, Development, 1996, no. 122, pp. 1489–1498. https://doi.org/10.1242/dev.122.5.1489

  409. Marlow H.Q., Srivastava M., Matus D.Q., et al., Anatomy and Development of the Nervous System of Nematostella vectensis, an Anthozoan Cnidarian, Develop. Neurobiol., 2009, vol. 69, pp. 235–254. https://doi.org/10.1002/dneu.20698

    Article  Google Scholar 

  410. Martindale, M.Q. and Hejnol, A., A developmental perspective: changes in the position of the blastopore during bilaterian evolution, Dev. Cell., 2009, vol. 17, pp. 162–174. https://doi.org/10.1016/j.devcel.2009.07.024

    Article  Google Scholar 

  411. Martindale, M.Q., Pang, K., and Finnerty, J.R., Investigating the origins of triploblasty: “mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa), Development, 2004, vol. 131, no. 10, pp. 2463–2474. https://doi.org/10.1242/dev.01119

    Article  Google Scholar 

  412. Martinez, D.E., Bridge, D., Masuda-Nakagawa, L.M. et al., Cnidarian homeoboxes and the zootype, Nature, 1998, vol. 393, pp. 748–749.

    Article  Google Scholar 

  413. Martin-Duran, J., Passamaneck, Y.J., Martindale, M.Q., et al., The developmental basis for the recurrent evolution of deuterostomy and protostomy, Nat. Ecol. Evol., 2017, no. 1:0005. https://doi.org/10.1038/s41559-016-0005

  414. Martynov, A.V., Über zwei Grundtypen der Flügel bei den Insekten und ihre Evolution, Z. Morphol. Oekol., 1924, vol. 4, pp. 465–501.

    Article  Google Scholar 

  415. Masterman, A.T., On the structure of actinotrocha considered in relation to the suggested chordate affinities of Phoronis, Proc. R. Soc. Edinburgh, 1897, vol. 21, pp. 129–136. https://doi.org/10.1017/s037016460005015x

    Article  Google Scholar 

  416. Masterman, A.T., On the Diplochorda. 3. The early development and anatomy of Phoronis buskii, Q. J. Micr. Sci., 1900, vol. 43, pp. 281–366.

    Google Scholar 

  417. Matus, D.Q., Magie, C.R., Pang, K., et al., The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution, Dev. Biol., 2008, vol. 313, pp. 501–518.

    Article  Google Scholar 

  418. Matus, D.Q., Pang, K., Marlow, H., et al., Molecular evidence for deep evolutionary roots of bilaterality in animal development, Proc. Natl. Acad. Sci. U.S.A., 2006b, vol. 103, pp. 11195–11200.

    Article  Google Scholar 

  419. Matus, D.Q., Pang, K., Daly, M., and Martindale, M.Q., Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis, Evol. Dev., 2007a, vol. 9, pp. 25–38.

    Article  Google Scholar 

  420. Matus, D.Q., Thomsen, G.H., and Martindale, M.Q., Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarians gastrulation, Curr. Biol., 2006a, vol. 16, pp. 499–505.

    Article  Google Scholar 

  421. Matus, D.Q., Thomsen, G.H., and Martindale, M.Q., FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarians, Dev. Genes Evol., 2007b, vol. 217, pp. 137–148.

    Article  Google Scholar 

  422. Mayer, G., Franke, F.A., Treffkorn, S., et al., Onychophora, in Evolutionary Developmental Biology of Invertebrates, Wanninger, A., Ed., Wien: Springer-Verlag, 2015, vol. 3: Ecdysozoa I: Non-Tetraconata. pp. 53–94. https://doi.org/10.1007/978-3-7091-1865-8_4

  423. Mayer, G. and Whitington, P.M., Velvet worm development links myriapods with chelicerates, Proc. R. Soc. B. Biol. Sci., 2009, vol. 276, pp. 3571–3579. https://doi.org/10.1098/rspb.2009.0950

    Article  Google Scholar 

  424. Mayer, S., Particle capture in the crown of the ciliary suspension feeding polychaete Sabella penicillus: videotape recordings and interpretations, Mar. Biol., 1994, vol. 119, pp. 571–582. https://doi.org/10.1007/bf00354320

    Article  Google Scholar 

  425. McCall, C., A hypothetical reconstruction of Hallucigenia, PeerJ Preprints, 2019, vol. 7, e27551v1 (1–10). https://doi.org/10.7287/peerj.preprints.27551v1

  426. Melnikov, O.A., On the primary heteronomy of segments in Articulata, Zh. Obshch. Biol., 1971, vol. 32, no. 5, pp. 597–611.

    Google Scholar 

  427. Melnikov, O.A., On the promorphology of arthropods, Zh. Obshch. Biol., 1977, vol. 38, pp. 393–408.

    Google Scholar 

  428. Mendis, A.H., Rose, M.E., Rees, H.H., et al., Ecdysteroids in adults of the nematode, Dirofilaria immitis, Mol. Biochem. Parasitol., 1983, vol. 9, pp. 209–226.

    Article  Google Scholar 

  429. Mercer, J.G., Munn, A.E., and Rees, H.H., Caenorhabditis elegans: occurrence and metabolism of ecdysteroids in adults and dauer larvae, Comp. Biochem. Physiol., 1988, vol. 90B, pp. 261–267.

    Google Scholar 

  430. Merz, R.A., Textures and traction: how tube-dwelling polychaetes get a leg up, Invertebr. Biol., 2015, vol. 134, pp. 61–77. https://doi.org/10.1111/ivb.12079

    Article  Google Scholar 

  431. Merzendorfer, H., Insect chitin synthases: a review, J. Comp. Physiol., 2006, vol. 176, pp. 1–15. https://doi.org/10.1007/s00360-005-0005-3

    Article  Google Scholar 

  432. Merzendorfer, H., The cellular basis of chitin synthesis in fungi and insects: common principles and differences, Eur. J. Cell. Biol., 2011, vol. 90, pp. 759–769. https://doi.org/10.1016/j.ejcb.2011.04.014

    Article  Google Scholar 

  433. Millard, N.A.H., Monograph on the Hydroida of southern Africa, Ann. S. Afr. Mus., 1975. vol. 68, pp. 1–513.

    Google Scholar 

  434. Mitchell, B. and Crews, S.T., Expression of the Artemia trachealess gene in the salt gland and epipod, Evol. Dev., 2002, vol. 4, no. 5, pp. 344–353. https://doi.org/10.1046/j.1525-142x.2002.02023.x

    Article  Google Scholar 

  435. Moens, T., Braeckman, U., Derycke, S., et al., Ecology of free-living marine nematodes, in Handbook of Zoology Gastrotricha, Cycloneuralia and Gnathifera, Schmidt-Rhaesa, A., Ed., 2014, vol. 2: Nematoda, pp. 109–152. https://doi.org/10.1515/9783110274257.109

    Book  Google Scholar 

  436. Momose, T., Derelle, R., and Houliston, E., A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica, Development., 2008, vol. 135, pp. 2105–2113. https://doi.org/10.1242/dev.021543

    Article  Google Scholar 

  437. Montgomery, T.N., The development of Theridium, an aranead, up to the stage of reversion, J. Morphol., 1909, vol. 20, pp. 297–352. https://doi.org/10.1002/jmor.1050200205

    Article  Google Scholar 

  438. Morgan, T.H., The development of Balanoglossus, J. Morphol.,1894, vol. 9, pp. 1–86. https://doi.org/10.1002/jmor.1050090102

    Article  Google Scholar 

  439. Moroz, L.L., Kocot, K.M., Citarella, M.R., et al., The ctenophore genome and the evolutionary origins of neural systems, Nature, 2014, vol. 510, pp. 109–114. https://doi.org/10.1038/nature13400

    Article  Google Scholar 

  440. Moussian, B. Chitin: structure, chemistry, and biology, in Targeting Chitin-Containing Organisms, Adv. Exp. Med. Biol., Yang, Q. and Fukamizo, T., Eds., 2019. https://doi.org/10.1007/978-981-13-7318-3_2

    Book  Google Scholar 

  441. Moussian, B., The arthropod cuticle, in Arthropod Biology and Evolution, Minelli, A., Ed., Springer-Verlag Berlin Heidelberg, 2013a, pp. 171–196. https://doi.org/10.1007/978-3-642-36160-9_8

    Book  Google Scholar 

  442. Moussian, B., The apical plasma membrane of chitin-synthesizing epithelia, Insect Sci., 2013b, vol. 20, pp. 139–146. https://doi.org/10.1111/j.1744-7917.2012.01549.x

  443. Moussian, B., Veerkamp, J., Muller, U., and Schwarz, H., Assembly of the Drosophila larval exoskeleton requires controlled secretion and shaping of the apical plasma membrane, Matrix Biol., 2007, vol. 26, pp. 337–347. https://doi.org/10.1016/j.matbio.2007.02.001

    Article  Google Scholar 

  444. Muir, L.A., Ng, T.-W., Li, X.-F., et al., Palaeoslolecidan worms and a possible nematode from the Early Ordovician of South China, Palaeoworld, 2014, vol. 23, pp. 15–24. https://doi.org/10.1016/j.palwor.2013.06.003

    Article  Google Scholar 

  445. Müller, F., Beitrage zur Kenntnis der Termiten, Jena. Zeit. Naturwiss., 1875, vol. 9, pp. 241–264.

    Google Scholar 

  446. Müller, H., Beitrag zur embryonalentwicklung von Ascaris megalocephala, Zoology, 1903, vol. 17, no. 41, pp. 1–30.

    Google Scholar 

  447. Müller, K.J. and Hinz-Schallreuter, I., Palaeoscolecid worms from the middle Cambrian of Australia, Palaeontology, 1993, vol. 36, pp. 549–592.

    Google Scholar 

  448. Müller, K.J. and Wallossek, D., Morphology, ontogeny, and life habit of Agnostus pisiformis from the upper Cambrian of Sweden, Fossils Strata, 1987, vol. 19, pp. 191–124.

    Google Scholar 

  449. Murakami, Y., Ogasawara, M., Satoh, N., et al., Compartments in the lamprey embryonic brain as revealed by regulatory gene expression and the distribution of reticulospinal neurons, Brain Res. Bull., 2002, vol. 57, pp. 271–275. https://doi.org/10.1016/s0361-9230(01)00669-4

    Article  Google Scholar 

  450. Murakami, Y., Ogasawara, M., Sugahara, F., et al., Identification and expression of the lamprey pax-6 gene: evolutionary origin of segmented brain of vertebrates, Development, 2001, vol. 128, pp. 3521–3531. https://doi.org/10.1242/dev.128.18.3521

    Article  Google Scholar 

  451. Naumov, D.V., Hydroids and hydromedusae of the marine,brackish and freshwater basins of the U.S.S.R, in Opredeliteli po faune SSSR. Tom 70 (Keys to the Fauna of the USSR. Vol. 70), Leningrad: Izd. Akad. Nauk SSSR, 1960.

    Google Scholar 

  452. Naumov, D.V., Hydroids and Hydromedusae of the USSR, Jerusalem: Israel Program Sci. Transl., 1969.

  453. Nembo, B., Duie, P., Garcia, M., et al., Levels of ecdysteroid-like material in adults of Nippostrongylus brasiliensis during the intestinal phase, J. Helminthol., 1993, vol. 67, pp. 305–315.

    Article  Google Scholar 

  454. Neuhaus, B., Bresciani, J., and Peters, W., Ultrastructure of the pharyngeal cuticle and lectin labelling with wheat germ agglutinin-gold conjugate indicating chitin in the pharyngeal cuticle of Oesophagostomum dentatum (Strongylida Nematoda), Acta Zool., 1997, no. 78, pp. 205–213.

  455. Neuhaus, B., Kristensen, R.M., and Lemburg, C., Ultrastructure of the cuticle of the Nemathelminthes and electron microscopical localization of chitin, Verh. Dtsch. Zool. Ges., 1996, vol. 89, p. 221.

    Google Scholar 

  456. Neville, A.C., Chitin lamellogenesis in locust cuticle, Q. J. Micr. Sci., 1965, vol. 106, pp. 269–286.

  457. Neville, A.C., Biology of the Arthropod Cuticle, Berlin/Heidelberg/New York: Springer-Verlag, 1975.Neville, A.C., Cholesteric proteins, Mol. Cryst. Liq. Cryst., 1981, vol. 76, pp. 279–286.

  458. Newby, W.W., The embryology of the echiuroid worm Urechis caupo, Mem. Am. Philos. Soc., 1940, vol. 16, pp. 1–219.

    Google Scholar 

  459. Ng, M., Diaz-Benjumea, F.J., and Cohen, S.M., Nubbin encodes a pou-domain protein required for proximal-distal patterning in the Drosophila wing, Development, 1995, vol. 121, pp. 589–599.

    Article  Google Scholar 

  460. Ng, M., Diaz-Benjumea, F., Vincent, J.P., et al., Specification of the wing by localized expression of wingless protein, Nat., 1996, vol. 381, pp. 316–318.https://doi.org/10.1017/s0080456800016495

  461. E.A.T., The Feeding Mechanism, Formation of the Tube, and Physiology of Digestion in Sabella pavonina, Trans. R. Soc. Edinburgh, 1931, vol. 56, no. 3, pp. 537–598. https://doi.org/10.1038/381316a0Nicol

  462. Niebur, E. and Erdos, P., Theory of the locomotion of nematodes: dynamics of undulatory progression on a surface, Biophys. J., 1991, vol. 60, pp. 1132–1146. https://doi.org/10.1016/S0006-3495(91)82149-X

    Article  Google Scholar 

  463. Nielsen, C., Animal phylogeny in the light of the trochaea theory, Biol. J. Linn. Soc., 1985, vol. 25, pp. 243–299. https://doi.org/10.1111/j.1095-8312.1985.tb00396.x

    Article  Google Scholar 

  464. Nielsen, C., Structure and function of metazoan ciliary bands and their phylogenetic significance, Acta Zool. (Stockh.), 1987, vol. 68, pp. 205–262. https://doi.org/10.1111/j.1463-6395.1987.tb00892.x

    Article  Google Scholar 

  465. Nielsen, C., The development of the brachiopod Crania (Neocrania) anomala (O.F. Müller) and its phylogenetic significance, Acta Zool, 1991,vol. 72, no. 1, pp. 7–28. https://doi.org/10.1111/j.1463-6395.1991.tb00312.x

    Article  Google Scholar 

  466. Nielsen, C., Origin and evolution of animal life cycles, Biol. Rev., 1998, vol. 73, pp. 125–155.https://doi.org/10.1111/j.1469-185X.1997.tb00027.x

    Article  Google Scholar 

  467. Nielsen, C., Animal Evolution. Interrelationships among Living Phyla. New York: Oxford Univ. Press. 2001.

    Google Scholar 

  468. Nielsen, C., Animal Evolution: Interrelationships of the Living Phyla, 3rd ed., Oxford: Oxford Univ. Press, 2012.

    Google Scholar 

  469. Nielsen C., Early animal evolution: a morphologist’s view, R. Soc. Open. Sci., 2019, vol. 6, no. 7:190638. https://doi.org/10.1098/rsos.190638

    Article  Google Scholar 

  470. Nielsen, C., Brunet, T., Arendt, D., Evolution of the bilaterian mouth and anus, Nat. Ecol. Evol., 2018, vol. 2, no. 1358, pp. 1358–1376. https://doi.org/10.1038/s41559-018-0641-0

    Article  Google Scholar 

  471. Nielsen, C. and Jespersen, A., Entoprocta. Microscopic Anatomy of Invertebrates, Wiley-Liss: New York, 1997, vol. 13.

    Google Scholar 

  472. Nielsen, C. and Riisgård, H.U., Tentacle structure and filter feeding in Crisia eburnea and other cyclostomatous bryozoans, with a review of upstream-collecting mechanisms, Mar. Ecol. Prog. Ser., 1998, vol. 168, pp. 163–186.

  473. Niwa, N., Akimoto-Kato, A., Niimi, T., et al., Evolutionary origin of the insect wing via integration of two developmental modules, Evol. Dev., 2010, vol. 12, pp. 168–176. https://doi.org/10.1111/j.1525-142X.2010.00402.x

  474. Niwa, N., Inoue, Y., Nozawa, A., Saito, M., Misumi, Y., Ohuchi, H., Yoshioka, H., and Noji, S., Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development, Development, 2000, vol. 127, pp. 4373–4381. https://doi.org/10.1242/dev.127.20.4373

    Article  Google Scholar 

  475. Nosenko,T., Schreiber, F., Adamska, M., et al., Deep metazoan phylogeny: When different genes tell different stories, Mol. Phylogenet. Evol., 2013, vol. 67, no. 1, pp. 223–233. https://doi.org/10.1016/j.ympev.2013.01.010

    Article  Google Scholar 

  476. Ober, K.A. and Jockusch, E.L., The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum, Dev. Biol., 2006, vol. 294, pp. 391–405. https://doi.org/10.1016/j.ydbio.2006.02.053

    Article  Google Scholar 

  477. Ohde, T., Yaginuma, T., and Niimi, T., Insect morphological diversification through the modification of wing serial homologs, Science, 2013, vol. 340, no. 6131, pp. 495–4988. https://doi.org/10.1126/science.1234219

    Article  Google Scholar 

  478. Oken, L., Lehrbuch der Naturphilosophie, Jena: Frommann, 1831.

    Google Scholar 

  479. Olesen, J., Richter, S., and Scholtz, G., The evolutionary transformation of phyllopodous to stenopodous limbs in the Branchiopoda (Crustacea)—is there a common mechanism for early limb development in arthropods? Int. J. Dev. Biol., 2001, vol. 45, pp. 869–876.

    Google Scholar 

  480. O’Malley, M.A., Wideman, J.G. and Ruiz-Trillo, I. Losing Complexity: The Role of Simplification in Macroevolution, Trends Ecol. Evol., 2016, vol. 31, no. 8, pp. 608–621. https://doi.org/10.1016/j.tree.2016.04.004

    Article  Google Scholar 

  481. Omori, A., Akasaka, K., Kurokawa, D., et al., Gene expression analysis of six3, pax6, and otx in the early developmentof the stalked crinoid metacrinus rotundus, Gene Express. Patterns, 2011, vol. 11, nos. 1–2, pp. 48–56. https://doi.org/10.1016/j.gep.2010.09.002

    Article  Google Scholar 

  482. Omori, M . and Vervoort W., Observations on a living specimen of the giant hydroid Branchiocerianthus imperator, Zool. Med. Leiden, 1986, vol. 60, no. 16, pp. 257–261.

    Google Scholar 

  483. Ortega–Hernandez, J., Lobopodians, Curr. Biol., 2015, vol. 25, pp. R873–R875. https://doi.org/10.1016/j.cub.2015.07.028

    Article  Google Scholar 

  484. Osborn, H.F., The origin of the wings of insects, in Presidential Address of the Fifteenth Annual Meeting of the Ohio State Acad. Sci., Proc. Ohio State Acad. Sci., 1905, vol. 4, no. 7, pp. 333–339.

  485. Osipova, M.U., On the study of the mechanism of hydraulic movement of Priapulus caudatus, Zool. Zh., 1982, vol. 61, no. 2, pp. 170–181.

    Google Scholar 

  486. Ou, Q., Liu, J., Shu, D., et al., A rare onychophoran-like lobopodian from the lower Cambrian Chengjiang Lagerstatte, Southwestern China, and its phylogenetic implications, J. Paleontol., 2011, vol. 85, no. 3, pp. 587–594. https://doi.org/10.1666/09-147R2.1

    Article  Google Scholar 

  487. Ou, Q. and Mayer, G., A Cambrian unarmoured lobopodian, Lenisambulatrix humboldti gen. et sp. nov., compared with new material of Diania cactiformis, Sci. Rep., 2018, vol. 8, no. 1, p. 13667. https://doi.org/10.1038/s41598-018-31499-y

    Article  Google Scholar 

  488. Pabst, T. and Scholtz, G., The development of phyllopodous limbs in Leptostraca and Branchiopoda, J. Crust. Biol., 2009, vol. 29, pp. 1–12.

    Article  Google Scholar 

  489. Paramonov, A.A., Osnovy fitogel’mintologii (Fundamentals of Phytohelminthology), Moscow: Izd. Akad. Nauk SSSR, 1962, vol. 1.

  490. Pennington, J.T., Tamburri, M.N. and Barry J.P. Development, Temperature Tolerance, and Settlement Preference of Embryos and Larvae of the Articulate Brachiopod Laqueus californianus, Biol. Bull., 1999, vol. 196, no. 3, pp. 245–256. https://doi.org/10.2307/1542949

    Article  Google Scholar 

  491. Pernet, B., and R. R. Strathmann, Opposed ciliary bands in the feeding larvae of sabellariid annelids, Biol. Bull., 2011, vol. 220, pp.186–198. https://doi.org/10.1086/BBLv220n3p186

    Article  Google Scholar 

  492. Peters, W., Occurrence of chitin in mollusca, Comp. Biochem. Physiol., vol. 1972, no. 41, pp. 541–550.

  493. Peterson, K.J. and Eernisse, D.J., Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18s rdna gene sequences, Evol. Dev., 2001, vol. 3, pp. 170–205.

    Article  Google Scholar 

  494. Peterson, K.J., Lyons, J.B., Nowak, K.S., et al., Estimating metazoan divergence times with a molecular clock, Proc. Nat. Acad. Sci. USA, 2004, vol. 101, pp. 6536–6541. https://doi.org/10.1073/pnas.0401670101

    Article  Google Scholar 

  495. Philippe, H., Derelle, R., Lopez, P., et al., Phylogenomics revives traditional views on deep animal relationships, Curr. Biol., 2009, vol. 19, pp. 706–712.

    Article  Google Scholar 

  496. Philippe, H., Lartillot, N., and Brinkmann, H., Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia, Mol. Bioi. Evol., 2005, vol. 22, pp. 1246–1253.

    Article  Google Scholar 

  497. Ponomarenko, A.G., Major events in the biosphere evolution, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-anthropogenic Biosphere Evolution), Moscow: Nauka, 1993, pp. 15–25.

  498. Ponomarenko, A.G., Early stages of arthropod evolution, in Vvedenie v paleoentomologiyu (Introduction into Paleoentomology), Zherikhin, V.V., Ponomarenko, A.G., and Rasnitsyn, A.P., Eds., Moscow: Tovarishch. Nauch. Izd. KMK, 2008, pp. 254–278.

  499. Pross, A., Untersuchungen zur entwicklungsgeschichte der araneae, Z. Morphol. Okol. Tiere, 1966, vol. 58, pp. 38–108.

    Article  Google Scholar 

  500. Quartau, J.A., An overview of the paranotal theory on the origin of the insect wings, Publ. Inst. Zool. “Dr. Augusto Nobre” Fac. Ciencias do Porto, 1986, no. 194, pp. 1–42.

  501. Ramsköld, L., Homologies in Cambrian Onychophora, Lethaia, 1992a, vol. 25, pp. 443–460.

    Article  Google Scholar 

  502. Ramsköld, L., The second leg row of Hallucigenia discovered, Lethaia, 1992b, vol. 25, no. 2, pp. 221–224. https://doi.org/10.1111/j.1502-3931.1992.tb01389.x

    Article  Google Scholar 

  503. Ramsköld, L. and Chen J.-Y., Cambrian lobopodians: morphology and phylogeny, in Arthropod Fossils and Phylogeny, Edgecombe, G.D., Ed., New York: Columbia Univ. Press, 1998, pp. 107–150.

    Google Scholar 

  504. Ramsköld, L. and Edgecombe, G.D., Trilobite appendage structure—Eoredlichia reconsidered, Alcheringa, 1996, vol. 20, pp. 269–276.

    Article  Google Scholar 

  505. Ramsköld, L. and Hou, X.G., New early Cambrian animal and onychophoran affinities of enigmatic metazoans, Nat., 1991, vol. 351, pp. 225–228.

    Article  Google Scholar 

  506. Rasnitsyn, A.P., A modified paranotal theory of insect wing origin, J. Morphol., 1981, vol. 168, pp. 331–338.

    Article  Google Scholar 

  507. Rattenbury, J.C., The Embryology of Phoronopsis viridis, J. Morph. 1954, vol. 95, no. 2, pp. 289–334. https://doi.org/10.1002/jmor.1050950206

    Article  Google Scholar 

  508. Rauther, M., Morphologie und verwandschaftsbeziehungen der nematoden, Ergeb. Fortschr. Zool., 1909, vol. 1, pp. 491–596.

    Google Scholar 

  509. Rees, H.H. and Mendis, A.H.W., The occurrence and possible significance of ecdysteroids during nematode and cestode development, in Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones, Hoffmann, J.A. and Porchet, P., Eds., Berlin: Springer-Verlag, 1984, pp. 338–345.

    Google Scholar 

  510. Requena, D., Alvarez, J.A., Gabilondo, H., Loker, R., Mann, R.S., and Estella, C., Origins and specification of the Drosophila wing, Curr. Biol., 2017, vol. 27, no. 24, pp. 3826–3836. https://doi.org/10.1016/j.cub.2017.11.023

    Article  Google Scholar 

  511. Retallack, G.J., Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil, Alcheringa: Austral. J. Palaeontol., 2007, vol. 31, no. 3, pp. 215–240. https://doi.org/10.1080/03115510701484705

    Article  Google Scholar 

  512. Richter, S., The tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea, Organism. Divers. Evol., 2002, vol. 2, no. 3, pp. 217–237. https://doi.org/10.1078/1439-6092-00048

    Article  Google Scholar 

  513. Rieger, R.M. and Rieger, G.E., Fine structure of the archiannelid cuticle and remarks on the evolution of the cuticle within the Spiralia, Acta Zool., 1976, vol. 57, pp. 53–68.

    Article  Google Scholar 

  514. Rieger, R.M., Evolution of the cuticle in lower Eumetazoa, in Biology of the Integument, Bereiter-Hahn, J., Matoltsy, A.G., and Richards, K.S., Eds., Berlin: Springer-Verlag, 1984, vol. 1, pp. 389–399.

    Google Scholar 

  515. Rieger, R.M., Morphology of the Turbellaria at the ultrastructural level, Hydrobiologia, 1981, vol. 84, pp. 213–229.

    Article  Google Scholar 

  516. Riisgård, H.U., Methods of ciliary filter feeding in adult Phoronis muelleri (phylum Phoronida) and in its freeswimming actinotroch larva, Mar. Biol. (Berlin), 2002, vol. 141, pp. 75–87. https://doi.org/10.1007/s00227-002-0802-0

    Article  Google Scholar 

  517. Riisgård, H.U. and Ivarsson, N.M. The crown-filament pump of the suspension-feeding polychaete Sabella penicillus: filtration, effects of temperature and energy cost, Mar. Ecol. Prog. Ser., 1990, vol. 62, pp. 249–257. https://doi.org/10.3354/meps062249

    Article  Google Scholar 

  518. Riisgård, H.U. and Larsen, P.S., Particle-capture mechanisms in suspension-feeding invertebrates, Mar. Ecol. Progr. Ser., 2010, vol. 418, pp. 255-293. https://doi.org/10.3354/meps08755

    Article  Google Scholar 

  519. Riisgård, H.U. and Manriquez, P., Filter-feeding in fifteen marine ectoprocts (Bryozoa): particle capture and water pumping, Mar. Ecol. Progr. Ser., 1997, vol. 154, pp. 223–239. https://doi.org/10.3354/meps154223

    Article  Google Scholar 

  520. Riisgård, H.U., Nielsen, C., Fuchs, et al., Ciliary feeding structures and particle capture mechanism in the freshwater bryozoans Plumatella repens (Phylactolaemata), Invertebr. Biol., 2004, vol. 123, no. 2, pp. 156–167. https://doi.org/10.1111/j.1744-7410.2004.tb00151.x

    Article  Google Scholar 

  521. Riisgård, H.U., Nielsen, C., and Larsen, P.S., Downstream collecting in ciliary suspension feeders: the catch-up principle, Mar. Ecol. Proc. Ser., 2000, vol. 207, pp. 33–51.

    Article  Google Scholar 

  522. Robison, R.A., Affinities of Aysheaia (Onychophora), with description of a new Cambrian species, J. Paleontol., 1985, vol. 59, no. 1, pp. 226–235.

    Google Scholar 

  523. Rodendorf, B.B., Wing evolution and phylogeny of long-tailed two-wing Oligoneura (Diptera, Nematocera), Trudy Paleontol. Inst. Akad. Nauk SSSR, 1946, vol. 13, no. 2, pp. 1–108.

    Google Scholar 

  524. Rogers, W.P., Juvenile and moulting hormones from nematodes, Parasitology, 1973, vol. 67, pp. 105–113.

    Article  Google Scholar 

  525. Rouse, G.W., Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa, Biol. J. Linn. Soc., 1999, vol. 66, pp. 411–464. https://doi.org/10.1111/j.1095-8312.1999.tb01920.x

    Article  Google Scholar 

  526. Rouse, G.W., Bias? What bias? The evolution of downstream larval-feeding in animals, Zool. Scr., 2000, vol. 29, pp. 213–236.https://doi.org/10.1038/nature14256

  527. P., Daley, A.C., and Briggs, D.E.G., Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps, Nature, 2015, vol. 522, pp. 77–80. https://doi.org/10.1046/j.1463-6409.2000.00040.xRoy

  528. Ruppert, E. and Barnes, R., Invertebrate Zoology, 6th ed., Saunders College Publishing, 1994.

    Google Scholar 

  529. Ruppert E., Fox R.S., and Barnes R.D., Invertebrate Zoology: a Functional Evolutionary Approach, Belmont, CA: Thomson–Brooks/Cole, 2004.

    Google Scholar 

  530. Russell, F. S. The medusae of the British Isles, London: Cambridge University Press, 1953.

    Google Scholar 

  531. Russell–Hunter, W.D., A Life of Invertebrates, New York: Macmillan Publishing Co., 1979.

    Google Scholar 

  532. Ryan, J.F., Mazza, M.E., Pang, K., et al., Pre-bilaterian origins of the hox cluster and the hox code: evidence from the sea anemone, Nematostella, PLoS ONE, 2007, vol. 2, no. 1, e153. https://doi.org/10.1371/journal.pone.0000153

  533. Ryan, J.F., Pang, K., Schnitzler, C. E, et al., The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution, Science, 2013, vol. 342: 1242592. https://doi.org/10.1126/science.1242592

    Article  Google Scholar 

  534. Saina, M., Genichovich, E., Renfer, E., et al., BMPs and Chordin regulate patterning of the directive axis in a sea anemone, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 18592–18597.

    Article  Google Scholar 

  535. Santagata, S., Larval development of Phoronis pallida (Phoronida): Implications for morphological convergence and divergence among larval body plans, J. Morph. 2004, vol. 259, no. 3, 347–358. https://doi.org/10.1002/jmor.10205

    Article  Google Scholar 

  536. Santagata, S., Phoronida, in A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 2: Lophotrochozoa (Spiralia), Wien: Springer-Verlag, 2015. https://doi.org/10.1007/978-3-7091-1871-9_10

    Book  Google Scholar 

  537. Sauber, F., Reuland, M., Berchtold, J.P., et al., Cycle de mue et ecdysteroides chez une sangsue hirudo medicinalis, C. R. Acad. Sci., Paris, 1983, vol. 296, pp. 413–418.

    Google Scholar 

  538. Schmidt-Rhaesa, A., Bartolomaeus, T., Lemburg, C., et al., The position of the Arthropoda in the phylogenetic system, J. Morphol., 1998, vol. 238, pp. 263–285.

    Article  Google Scholar 

  539. Schmidt-Rhaesa, A., The Evolution of Organ Systems, Oxford: Univ. Press, Oxford, 2007.

    Book  Google Scholar 

  540. Scholz, C. B. and Technau, U., The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa), Dev. Genes Evol., 2003, vol. 212, pp. 563–570.

    Article  Google Scholar 

  541. Schroeder, P.C., Chaetae, in Biology of the Integument, Invertebrates, Bereiter-Hahn, J., Matoltsy, A.G., and Richards, K.S., Eds., Berlin: Springer, 1984, vol. 1, pp. 297–309.

    Google Scholar 

  542. Schwentner, M., Combosch, D.J., Nelson, J.P., et al., A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships, Curr. Biol., 2017, vol. 27, pp. 1–7. https://doi.org/10.1016/j.cub.2017.05.040

    Article  Google Scholar 

  543. Seaver, E.C., Yamaguchi, E., Richards, G.S. et al. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation, EvoDevo, 2012, 8: 3. https://doi.org/10.1186/2041-9139-3-8

    Article  Google Scholar 

  544. Sedgwick, A., On the Origin of Metameric Segmentation and Some Other Morphological Questions, Q. J. Microsc. Sci., N.S., 1884, vol. 24, pp. 43–82.

  545. Sedgwick, A., The development of Peripatus capensis. Part I, Q. J. Micr. Soc., 1885, vol. 25, pp. 449–466.

    Google Scholar 

  546. Sedgwick, A., The development of the cape species of Peripatus. Part II, Q. J. Micr. Soc., 1886, vol. 26, pp. 175–212.

    Google Scholar 

  547. Sedgwick, A., The development of the cape species of Peripatus. Part III. On the changes from stage A to stage F, Q. J. Micr. Soc., 1887, vol. 27, pp. 467–550.

    Google Scholar 

  548. Sedgwick, A., The development of the cape species of Peripatus. Part IV. The changes from stage G to birth, Q. J. Micr. Soc., 1888, vol. 28, pp. 373–396.

    Google Scholar 

  549. Selys-Longchamps, M., Developpement des Phoronis, Arch. Biol., 1902, vol. 18, pp. 495–597.

  550. Seo, H.C., Curtiss, J., Mlodzik, M., Fjose, A., et al., Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development, Mech. Dev., 1999, vol. 83, pp. 127–139.

    Article  Google Scholar 

  551. Seurat, L.G., Histoire naturelle des nematodes de la Berberie. Part I, in Morphologie, Développement, Éthnlogie, et Affinités des Nématodes, Alger, 1920.

  552. Shapeero, W., The epidermis and cuticle of Priapulus caudatus Lamarck, Trans. Am. Microsc. Soc., 1962, vol. 81, no. 4, pp. 352–355.

    Article  Google Scholar 

  553. Sharova, I.Kh., Zhiznennyye formy zhuzhelits (Coleoptera, Carabidae) (Life Forms of Ground Beetles (Coleoptera, Carabidae)), Gilyarov, M.S., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  554. Shatrov, A.B., Ultrastructure of the integument during moulting of the quiescent tritonymphal instar of trombiculid mite Hirsutiella zachvatkini (Acariformes: Trombiculidae), Exp. Appl. Acarol., 2001, vol. 25, pp. 127–142.

    Article  Google Scholar 

  555. Shcherbakov, D.E., Controversies over the insect origin revisted, in Proc. 1st Palaeontol. Conf. Moscow, 1998, Bratislava, 1999, p. 65–72.

  556. Shen, X.N., Sznitman, J., Krajacic, P., et al., Undulatory locomotion of Caenorhabditis elegans on wet surfaces, Biophys. J., 2012, vol. 102, no. 12, pp. 2772–2781. https://doi.org/10.1016/j.bpj.2012.05.012

    Article  Google Scholar 

  557. Shillito, B., Lubbering, B., Lechaire, J.P., et al., Chitin localization in the tube secretion system of a repressurized deep-sea tube worm, J. Struct. Biol., 1995, vol. 114, pp. 67–75.

    Article  Google Scholar 

  558. Shoguchi, E., Harada, Y., Numakunai, T., et al., Expression of the Otx gene in the ciliary bands during sea cucumber embryogenesis, Genesis, 2000, vol. 27, pp. 58–63.

    Article  Google Scholar 

  559. Shu, D., Vannier, J., Luo, H., et al., Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (Lower Cambrian; Southwest China), Lethaia, 1999, vol. 32, pp. 279–298.

    Article  Google Scholar 

  560. Shubin, N., Tabin, C., and Carroll, S., Fossils, genes and the evolution of animal limbs, Nature, 1997, vol. 388, pp. 639–648. https://doi.org/10.1038/41710

    Article  Google Scholar 

  561. Schuchert P., The European athecate hydroids and their medusa (Hydrozoa, Cnidaria): Capitata Part 2, Rev. Suisse Zool., 2010, vol. 117, no. 3, pp. 337–555.

    Article  Google Scholar 

  562. Silén, L., Developmental biology of Phoronidea of the Gullmar Fjord area (west coast of Sweden), Acta Zool. (Stockh.), 1954, vol. 35, pp. 215–257. https://doi.org/10.1111/j.1463-6395.1954.tb00035.x

    Article  Google Scholar 

  563. Simion, P., Philippe, H., Baurain, D., et al., A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals, Curr. Biol., 2017, vol. 27, no. 7, pp. 958–967. https://doi.org/10.1016/j.cub.2017.02.031

    Article  Google Scholar 

  564. Smith, M.R., A palaeoscolecid worm from the Burgess Shale, Palaeontology, 2015, vol. 58, no. 6, pp. 973–979. https://doi.org/10.1111/pala.12210

    Article  Google Scholar 

  565. Smith, M.R. and Caron, J.-B., Hallucigenia’s head and the pharyngeal armature of early ecdysozoans, Nature, 2015, vol. 523, no. 7558, pp. 75–78.https://doi.org/10.1038/nature1457326106857

    Article  Google Scholar 

  566. Smith, M.R. and Ortega-Hernandez, J., Hallucigenia’s onychophoran-like claws and the case for Tactopoda, Nature, 2014, vol. 514, no. 7522, pp. 363–366. https://doi.org/10.1038/nature13576

    Article  Google Scholar 

  567. Snodgrass, R.E., Principles of Insect Morphology, New York: McGraw-Hill, 1935.

    Google Scholar 

  568. Snodgrass, R.E., Evolution of the Annelida, Onychophora, and Arthropoda, Smithson. Misc. Collect., 1938, vol. 97, no. 6, pp. 1–159.

  569. Solovei, I.V., Histochemical and autoradiographic study of the cuticular epithelium of the priapulids Priapulus caudatus and Halicryptus spinulosus, Tsitologiya 1983, vol. 25, no. 1, pp. 24–32.

  570. Spring, J., Yanze, N., Josch, C., et al., Conservation of Brachyury, Mef2, and snail in the myogenic lineage of jellyfish: a connection to the mesoderm of Bilateria, Dev. Biol., 2002, vol. 244, pp. 372–384. https://doi.org/10.1006/dbio.2002.0616

    Article  Google Scholar 

  571. Stauffer, H., Die lokomotion der nematoden. Beitrage zur kausal-Morphologie der Fadenwürmer, Zool. Jb., Abt. Syst., 1924, vol. 49, pp. 119–130.

    Google Scholar 

  572. Stein, M., Waloszek, D., Maas, A., et al., The stem crustacean Oelandocaris oelandica re-visited, Acta Palaeontol. Polon., 2008, vol. 53, pp. 461–484.

    Article  Google Scholar 

  573. Steiner, M., Hu, S., Liu, J., et al., A new species of Hallucigenia from the Cambrian Stage 4 Wulongqing Formation of Yunnan (South China) and the structure of sclerites in lobopodians, Bull. Geosci., 2012, vol. 87, no. 1, pp. 107–124.

    Article  Google Scholar 

  574. Steinmetz, P.R.H., A non-bilaterian perspective on the development and evolution of animal digestive systems, Cell Tissue Res., 2019, vol. 377, no. 3, pp. 321–339. https://doi.org/10.1007/s00441-019-03075-x

    Article  Google Scholar 

  575. Steinmetz, P.R.H., Aman, A., Kraus, J.E.M. et al. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology, Nat. Ecol. Evol. 2017, vol. 1, pp. 1535–1542. https://doi.org/10.1038/s41559-017-0285-5

    Article  Google Scholar 

  576. Steinmetz, P.R.H., Urbach, R., Posnien N., et al., Six3 demarcates the anterior-most developing brain region in bilaterian animals, EvoDevo, 2010, vol. 1, no. 1, pp. 1–9. https://doi.org/10.1186/2041-9139-1-14

  577. Storch, V., Minor pseudocoelomates, in Biology of Integument. Invertebrates, Bereiter–Hahn, J., Matoltsy, A.G. and Richards, K.S., Eds., Berlin: Springer, 1984, vol. 1, pp. 242–268.

    Google Scholar 

  578. Storch, V., Onychophora, in Biology of Integument. Invertebrates, Bereiter-Hahn, J., Matolsky, A.G. and Richards, R.S., Eds., Berlin: Springer, 1984, vol. 1, pp. 703–708.

  579. Storch, V., Integument, in The ultrastructure of Polychaeta. Microfauna Marina, 1988, vol. 4, pp. 13–36.

    Google Scholar 

  580. Størmer, L., Studies on trilobite morphology, Part I. The thoracic appendages and their phylogenetic significance, Norsk Geol. Tidsskrift, 1939, vol. 19, pp. 143–274.

    Google Scholar 

  581. Strand, M.R. and Chapman, R.F., The egg and embryology, in The Insects: Structure and Function, 5th ed., Simpson, S.J. and Douglas, A.E., Eds., 2013, pp. 347–397. https://doi.org/10.1017/cbo9781139035460.019

    Book  Google Scholar 

  582. Strathmann, R.R., The behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension feeding, J. Exp. Mar. Biol. Ecol., 1971, vol. 6, pp. 109–160. https://doi.org/10.1016/0022-0981(71)90054-2

    Article  Google Scholar 

  583. Strathmann, R., Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoprocta), Mar. Biol. (Berlin), 1973, vol. 23, pp. 129–136. https://doi.org/10.1007/BF00389170

    Article  Google Scholar 

  584. Strathmann, R.R., Larval feeding in echinoderms, Am. Zool., 1975, vol. 5, pp. 717–730. https://doi.org/10.1093/icb/15.3.717

    Article  Google Scholar 

  585. Strathmann, R.R., Ciliary sieving and active ciliary response in capture of particles by suspension-feeding brachiopod larvae, Acta Zool., 2005, vol. 86, pp. 41–54. https://doi.org/10.2307/25066587

    Article  Google Scholar 

  586. Strathmann, R. and Bonar, D., Ciliary feeding of tornaria larvae of Ptychodera flava (Hemichordata: Enteropneusta), Mar. Biol. (Berl.), 1976, vol. 34, pp. 317–324. https://doi.org/10.1007/bf00398125

    Article  Google Scholar 

  587. Strathmann, R.R., Jahn, T.L., and Fonseca, J.R.C., Suspension feeding by marine invertebrate larvae: clearance of particles by ciliated bands of a rotifer, pluteus, and trochophore, Biol. Bull. Mar. Biol. Lab., Woods Hole, 1972, vol. 142, pp. 505–519. https://doi.org/10.2307/1540326

    Book  Google Scholar 

  588. Stricker, S.A. and Reed, C.G., The ontogeny of shell secretion in Terebratalia transversa (Brachiopoda, Articulata) I. Development of the mantle, J. Morphol, 1985, vol. 183, pp. 233–250. https://doi.org/10.1002/jmor.1051830302

    Article  Google Scholar 

  589. Struck, T.H., Paul, C., Hill, N., et al., Phylogenomic analyses unravel annelid evolution, Nature, 2011, vol. 471, pp. 95–98.

    Article  Google Scholar 

  590. Šulc, K., Das tracheensystem von Lepisma (Thysanura) und phylogenie der Pterygogenea, Acta Soc. Sci. Nat. Moravicae, 1927, vol. 4, pp. 1–108.

    Google Scholar 

  591. Sutton, M.D., Briggs, D.E.G., and Siveter, D.J., The arthropod Offacolus kingi (Chelicerata) from the Silurian of Herefordshire, England: computer based morphological reconstructions and phylogenetic affinities, Proc. R. Soc. Ser., vol. 269, pp. 1195–1203.

  592. Tagawa, K., Humphreys, T., and Satoh, N., T-brain expression in the apical organ of Hemichordate Tornaria larvae suggests its evolutionary link to the vertebrate forebrain, J. Exp. Zool. (Mol. Dev. Evol.), 2000, vol. 288, pp. 23–31.

  593. Taylor, H.H. and Taylor, E.W., Gills and lungs: the exchange of gases and ions, in Microscopic Anatomy of Invertebrates. Decapod Crustacea, Harrison, F.W. and Humes, A.G., Eds., New York: Wiley-Liss Inc., 1992, vol. 10, pp. 203–293.

    Google Scholar 

  594. Technau, U. and Bode, H.R., HyBral, a Brachyury Homologue, Acts During Head Formation in Hydra, Development, 1999, vol. 126, pp. 999–1010.

    Article  Google Scholar 

  595. Technau U., Steele R.E., Evolutionary crossroads in developmental biology: Cnidaria, Development, 2011, vol. 138, no. 8, pp. 1447–1458. https://doi.org/10.1242/dev.048959

    Article  Google Scholar 

  596. Tchesunov, A.V., Biologiya morskikh nematod (Biology of Sea Nematods), Moscow: Tovarishch. Nauch. Izd. KMK, 2006.

  597. Telford, M., Budd, G., and Philippe, H., Phylogenomic insights into animal evolution, Curr. Biol., 2015, vol. 25, pp. 876–887.

    Article  Google Scholar 

  598. Temereva, E.N. and Malakhov, V.V., A key to the identification of phoronid larvae (Phoronida, Lophophorata) from the Sea of Japan, Zool. Zh., 2004, vol. 2004, no. 9, pp. 1115–1126 (in Russian with English Summary).

    Google Scholar 

  599. Temereva, E.N. and Malakhov, V.V., Embryogenesis and larval development of Phoronopsis harmeri Pixell, 1912 (Phoronida): Dual origin of the coelomic mesoderm, Invertebr. Reprod. Develop., 2007, vol. 50, no. 2, pp. 57–66. https://doi.org/10.1080/07924259.2007.9652228

  600. Temereva, E.N. and Malakhov, V.V., Filter feeding mechanism in the phoronid Phoronopsis harmeri (Phoronida, Lophophorata), Russ. J. Russ. Geol., 2010, vol. 36, no. 2, pp. 109–116. https://doi.org/10.1134/S1063074010020057

    Article  Google Scholar 

  601. Temereva, E.N. and Malakhov, V.V., The evidence of metamery in adult brachiopods and phoronids, Invertebr. Zool., 2011, vol. 8, no. 2, pp. 91–112. https://doi.org/10.15298/invertzool.08.2.01

    Article  Google Scholar 

  602. Temereva, E.N. and Malakhov, V.V., Embryogenesis in phoronids, Invertebr. Zool., 2012, vol. 9, no. 1, pp. 1–39. https://doi.org/10.15298/invertzool.09.1.01

    Article  Google Scholar 

  603. Temereva, E.N. and Malakhov, V.V. Metamorphic remodeling of morphology and the body cavity in Phoronopsis harmeri (Lophotrochozoa, Phoronida): the evolution of the phoronid body plan and life cycle, BMC Evol. Biol., 2015, vol. 15, pp. 1–28.

  604. Temereva, E.N., Malakhov, V.V., and Yushin V.V., Histology and ultrastructure of the body wall in the phoronid Phoronopsis harmeri, Russ. J. Mar. Biol., 2001, vol. 27, pp. 192–201.https://doi.org/10.1186/s12862-015-0504-0

  605. Ten Hove, H.A. and Kupriyanova, E.K., Taxonomy of Serpulidae (Annelida, Polychaeta): the state of affairs, Zootaxa, 2009, no. 2036, pp. 1–126.

  606. Tilney, L.G., Actin-filaments in acrosomal reaction of Limulus sperm—motion generated by alterations in packing of filaments, J. Cell Biol., 1975, vol. 64, pp. 289–310.

    Article  Google Scholar 

  607. Tilney, L.G., Connelly, P.S., and Guild, G.M., Microvilli appear to represent the first step in actin bundle formation in Drosophila bristles, J. Cell Sci., 2004, vol. 117, pp. 3531–3538.

    Article  Google Scholar 

  608. Tomoyasu, Y., The double identity of insect wings, Curr. Biol., 2018, vol. 28, no. 2, pp. R75–R77. https://doi.org/10.1016/j.cub.2017.12.004

    Article  Google Scholar 

  609. Topper, T., Skovsted, C., Peel, J., et al., Molting in the lobopodian “Onychodictyon” from the Lower Cambrian of Greenland, Lethaia, 2013, vol. 46, no. 4, pp. 490–495. https://doi.org/10.1111/let.12026

    Article  Google Scholar 

  610. Tower, W.L., The origin and development of the wings of Coleoptera, Zool. Jb. Anat., 1903, vol. 7, pp. 517–572.

    Google Scholar 

  611. Trueman, E.R., Bivalve mollusks: fluid dynamics of burrowing, Science, 1966, vol. 152, no. 3721, pp. 523–525. https://doi.org/10.1126/science.152.3721.523

    Article  Google Scholar 

  612. Trueman, E.R., The dynamics of burrowing in Ensis (Bivalvia), Proc. R. Soc. Biol. Sci., 1967, no. 166, pp. 459–476. https://doi.org/10.1098/rspb.1967.0007

  613. Trueman, E.R., The burrowing activites of bivalves, Symp. Zool. Soc. London, 1968a, vol. 22, pp. 167–186.

    Google Scholar 

  614. Trueman, E.R., The mechanism of burrowing of some naticid gastropods in comparison with that of other molluscs, J. Exp. Biol., 1968b, vol. 48, pp. 663–678.

    Article  Google Scholar 

  615. Trueman, E.R., The Locomotion of Soft-Bodied Animals, New York: Am. Elsevier Publ. Co., 1975.

    Google Scholar 

  616. Trueman, E.R. and Ansell, A.D., The mechanisms of burrowing into soft substrata by marine animals, Ocean. Marine Biol., 1969, vol. 7, pp. 315–366.

    Google Scholar 

  617. Trueman, E.R., Brand, A.R., and Davis, P., The dynamics of burrowing of some common littoral bivalves, J. Exp. Biol., 1966, no. 44, pp. 469–492.

  618. Turbeville, J.M., Nemertinea, in Microscopic Anatomy of Invertebrates, New York: Wiley-Liss, 1991, vol. 3, pp. 285–328.

  619. Vortsepneva E., and Lavrov A., Studying cuticle shedding in three species of leeches (Hirudinea, Annelida), Invertebr. Biol., 2021, vol. 140, no. 2, e12317.https://doi.org/10.1111/ivb.12317

  620. Walcott, C., Middle Cambrian annelids. Cambrian geology and paleontology. Part II, Smithson. Misc. Collect., 1911, no. 57, pp. 109–144.

  621. Walcott, C., Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merosomata. Part II, Smithson. Misc. Collect., 1912, vol. 57, pp. 145–228.

    Google Scholar 

  622. Walcott, C.D., Cambrian geology and paleontology. Part IV, no. 4. Appendages of trilobites, Smithson. Misc. Collect., 1918, vol. 67, pp. 115–216.

    Google Scholar 

  623. Walcott, C.D., Addenda to descriptions of Burgess Shale fossils, Smithson. Misc. Collect., 1931, vol. 85, no. 3, pp. 1–46.

  624. Walossek, D. and Müller, K.J., Stem-lineage crustaceans from the Upper Cambrian of Sweden and their bearing upon the position of Agnostus, Lethaia, 1990, vol. 23, pp. 409–427.

  625. Walossek, D., On the Cambrian diversity of Crustacea, in Crustacea and the Biodiversity Crisis, Schram, F.R. and Klein, V., Eds., Leiden: Brill Acad. Publ., 1999, vol. 1, pp. 3–27.

    Google Scholar 

  626. Waloszek, D., The “Orsten” window Fa three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda, Paleontol. Res., 2003, vol. 7, pp. 71–88.

    Article  Google Scholar 

  627. Waloszek, D., Chen, J., Maasa, A., et al., Early Cambrian arthropods—new insights into arthropod head and structural evolution, Arthropod Struct. Dev., 2005, vol. 34, pp. 189–205. https://doi.org/10.1016/j.asd.2005.01.005

    Article  Google Scholar 

  628. Warbrick, E.V., Barker, G.C., Rees, H.H., et al., The effect of invertebrate hormones and potential hormone inhibitors on the third larval moult of the filarial nematode, Dirofilaria immitis, in vitro, Parasitol., 1993, vol. 107, pp. 459–463.

    Article  Google Scholar 

  629. Webb, M., The morphology and formation of the pogonophoran tube and its value in systematics, Z. Zool. Syst. Evol., 1971, vol. 9, pp. 169–181.

    Article  Google Scholar 

  630. Weigert, A. and Bleidorn, C., Current status of annelid phylogeny, Org. Divers. Evol., 2016, vol. 16, pp. 345–362. https://doi.org/10.1007/s13127-016-0265-7

    Article  Google Scholar 

  631. Westheide, W., Progenesis as a principle in meiofauna evolution, J. Nat. Hist., 1987, vol. 21, pp. 843–854.

    Article  Google Scholar 

  632. Westheide W., Rieger G., Spezielle Zoologie. 3. Auflage. Teil 1. Einzeller und Wirbellose Tiere. Berlin-Heidelberg: Springer-Spektrum, 2013.

  633. Weygoldt, P., Die embryonalentwicklung des amphipoden Gammarus pulex pulex (L.), Zool. Jb. Anat. Ont., 1958, vol. 77, pp. 51–110.

    Google Scholar 

  634. Weygoldt, P., Embryologische untersuchungen an Ostracoden: die entwicklung von Cyprideis littoralis, Zool. Jb. Anat., 1960a, vol. 78, pp. 370–426.

    Google Scholar 

  635. Weygoldt, P., Beiträgy zur Kenntnis der Malakostrakenentwicklung. Die Keimblatterbildung bei Asellus aquaticus (L.), Z. Wiss. Zool., 1960b, vol. 163, pp. 340–354.

    Google Scholar 

  636. Weygoldt, P., Beitrag zur kenntnis der ontogenie der dekapoden: embryologische untersuchungen an Palaemonetes varions Leach, Zool. Jb. Anat. Ont., 1961, vol. 9, pp. 223–270.

    Google Scholar 

  637. Weygoldt, P., Vergleichende-embryologische Untersuchungen an Pseudoscorpionen III. Die Entwicklung von Neobisium museorum Leach (Neobisiinea, Neobisiidae). Mit dem Versuch einer Deutung der Evolution des Embryonalen Pumporgans, Z. Morph. Ökol. Tiere, 1965, vol. 55, pp. 321–382.

    Article  Google Scholar 

  638. Wheeler, W.M., A contribution to insect embryology, J. Morphol., 1893, vol. 8, pp. 1–161.

    Article  Google Scholar 

  639. Whelan, N.V, Kocot, K.M. and Halanych K.M., Employing Phylogenomics to Resolve the Relationships among Cnidarians, Ctenophores, Sponges, Placozoans, and Bilaterians, Integr. Comp. Biol. 2015, vol. 55, no. 6, pp. 1084–1095. https://doi.org/10.1093/icb/icv037

    Article  Google Scholar 

  640. Whitaker, A.F., Jamison, P.G., Schiffbauer, J.D., et al., Redescription of the Spence Shale palaeoscolecids in light of new morphological features with comments on palaeoscolecid taxonomy and taphonomy, Paläontol. Z., 2020, vol. 94, pp. 661–674. https://doi.org/10.1007/s12542-020-00516-9

    Book  Google Scholar 

  641. Whittard, W.F., Palaeoscolex piscatorum gen. et sp. nov., a worm from the Tremadocian of Shropshire, Quart. J. Geol. Soc., 1953, vol. 109, nos. 1–4, pp. 125–135.

    Article  Google Scholar 

  642. Whittington, H.B., Yohoia Walcott and Plenocaris n. gen., arthropods from the Burgess Shale, Middle Cambrian, British Columbia, Bull. Geol. Surv. Can., 1974, no. 231, pp. 1–27.

  643. Whittington, H.B., Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia, Fossils Str., 1975a, vol. 4, pp. 97–136.

  644. Whittington, H.B., The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia, Phil. Trans. R. Soc. London, Ser. B, 1975b, vol. 271, pp. 1–43.

    Google Scholar 

  645. Whittington, H.B., The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia, Phil. Trans. Roy. Soc. London, Ser. B, 1977, vol. 280, pp. 409–443.

    Google Scholar 

  646. Whittington, H.B., The Lobopod animal Aysheaia pedunculata Walcott, Middle Cambrian, Burgess Shale, British Columbia, Philos. Trans. R. Soc., B, 1978, vol. 284, no. 1000, pp. 165–197. https://doi.org/10.1098/rstb.1978.0061

    Article  Google Scholar 

  647. Whittington, H.B., Rare arthropods from the Burgess Shale, Middle Cambrian, British Columbia, Philos. Trans. R. Soc., B, 1982, vol. 292, pp. 329–357.

  648. Whittington, H.B. and Briggs, D.E.G., The largest Cambrian animal, Anomalocaris, Burges Shale, British Columbia, Philos. Trans. R. Soc., B, 1985, vol. 309, pp. 569–609.

  649. Wigglesworth, V.B., The evolution of insect flight, in Insect Flight, Rainey, R.C., Ed., Oxford: Blackwell Sci. Publ., 1976, pp. 255–269.

    Google Scholar 

  650. Williams, T.A., Distalless expression in crustaceans and the patterning of branched limbs, Dev. Genes Evol., 1998, vol. 207, no. 7, pp. 427–434. https://doi.org/10.1007/s004270050133

    Article  Google Scholar 

  651. Williams, T.A., The evolution and development of crustacean limbs: an analysis of limb homologies, in Evolutionary Developmental Biology of Crustacea, Scholtz, G., Ed., Lisse: A.A. Balkema, 2004, pp. 169–193.

    Google Scholar 

  652. Williams, A., Brunton, C.H.C., and Carlson, S.J., Brachiopoda, in Treatise on Invertebrate Paleontology, Kansas, Boulder, Colorado, Lawrence, 2007, vol. 6, Pt. H, p. 500.

  653. Williams, T.A. and Nagy, L.M., Developmental modularity and the evolutionary iversification of arthropod limbs, J. Exp. Zool., 2001, vol. 291, no. 3, pp. 241–257. https://doi.org/10.1002/jez.1101

    Article  Google Scholar 

  654. Williams, T.A, Nulsen, C., and Nagy, L.M., A complex role for distal-less in crustacean appendage development, Dev. Biol., 2002, vol. 241, no. 2, pp. 302–312. https://doi.org/10.1006/dbio.2001.0497

    Article  Google Scholar 

  655. Wills, M.A., Cambrian and recent disparity: the picture from priapulids, Paleobiology, 1998, vol. 24, no. 2, pp. 155–286. https://doi.org/10.1666/0094-8373

    Article  Google Scholar 

  656. Wolff, C. and Scholtz, G., The clonal composition of biramous and uniramous arthropod limbs, Proc. R. Soc. London, Ser. B, 2008, vol. 275, pp. 1023–1028.

    Google Scholar 

  657. Wollesen, T., Monje, S.V.R., Oliveira, A.L., et al., Staggered Hox expression is more widespread among molluscs than previously appreciated, Proc. R. Soc. B., 2018, vol. 285, 20181513. https://doi.org/10.1098/rspb.2018.1513

  658. Wollesen, T., Scherholz, M., Monje, S.V.R., et al., Brain regionalization genes are coopted into shell field patterning in Mollusca, Sci. Rep., 2017, no. 7:5486. https://doi.org/10.1038/s41598-017-05605-5

  659. Woodworth C.W., The wing veins of insects, Univ. Calif. Publ. Tech. Bull., 1906, vol. 1, pp. 1–152.

  660. Wright, J.C. and Luke, B.M., Ultrastructural and histochemical investigations of Peripatus integument, Tissue Cell, 1989, vol. 21, pp. 605–625.

    Article  Google Scholar 

  661. Xian-Guang, H., Bergström, J., and Ahlberg, P., Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China, GFF, 1995, vol. 117, no. 3, pp. 163–183. https://doi.org/10.1080/11035899509546213

    Article  Google Scholar 

  662. Yang, J., Ortega-Hernandez, J., Butterfield, N.J., et al., Specialized appendages in fuxianhuiids and the head organization of early euarthropods, Nature, 2013, vol. 494, no. 7438, pp. 468–471. https://doi.org/10.1038/nature11874

    Article  Google Scholar 

  663. Yang, J., Smith, M.R., Zhang, X., et al., Introvert and pharynx of Mafangscolex, a Cambrian palaeoscolecid, Geol. Mag., 2020. https://doi.org/10.1017/s0016756820000308

  664. Young, F.J. and Vinther, J., Data from: Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni, Dryad Dataset, 2017. https://doi.org/10.5061/dryad.7jh0q

  665. Yushin, V.V., Coomans, A., Borgonie, G., and Malakhov, V.V., Ultrastructural study of cuticle formation during embryogenesis of the free-living marine nematode Enoplus demani (Enoplida), Invertebr. Repr. Dev., 2002, vol. 42, pp. 189–203.

    Article  Google Scholar 

  666. Yushin V.V. and Malakhov V.V. Formation of the cuticle in the embryogenesis of the free-living marine nematode Enoplus demani, Dokl. Akad. Nauk SSSR, 1989, vol. 308, no. 2, pp. 497–499.

    Google Scholar 

  667. Yushin, V.V. and Malakhov, V.V., Formation of the body cuticle in the embryogenesis of the free-living marine nematode Halichoanolaimus sonorus (Chromadorida, Halichoanolaimidae), Zool. Zh., 1992, vol. 71, no. 1, pp. 23–30.

  668. Zapata, F., Goetz, F.E., Smith, S.A., et al., Phylogenomic analyses support traditional relationships within Cnidaria, PLoS One, 2015, vol. 10, e0139068. https://doi.org/10.1371/journal.pone.0139068

  669. Zakrevskaya, M.A. and Ivantsov, A.Yu., Dickinsonia costata—the first evidence of neoteny in Ediacaran organisms, Invertebr. Zool., 2017, vol. 14, no. 1. https://doi.org/10.15298/invertzool.14.1.XX

  670. Zenkevich, L.A. and Muraveiskaya, V.S., Hydraulic mode of animal movement, Priroda, 1964, no. 6, p. 89.

  671. Zenkevich, L.A., Essays on the evolution of the animal locomotor apparatus, Zh. Obshch. Biol., 1944, no. 5(3), pp. 129–148.

  672. Zhang, X.-G. and Aldridge, R.J., Development and diversification of trunk plates of the lower Cambrian lobopodians, Palaeontology, 2007, vol. 50, no. 2, pp. 401–415. https://doi.org/10.1111/j.1475-4983.2006.00634.x

    Article  Google Scholar 

  673. Zhang, X.-G. and Briggs, D.E.G., The nature and significance of the appendages of Opabinia from the middle Cambrian Burgess Shale, Lethaia, 2007, vol. 40, pp. 161–173.

    Article  Google Scholar 

  674. Zhang, X.-L., Shu, D.-G., and Erwin, D.H., Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships, J. Paleontol., 2007, vol. 81, pp. 1–52.

    Article  Google Scholar 

  675. Zhang, Y., Foster, J.M., Nelson, L.S., Ma D., and Carlow, C.K., The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively, Dev. Biol., 2005, vol. 285, pp. 330–339.

    Article  Google Scholar 

  676. Zhuravlev, A.Yu., Early history of the Metazoa—a paleontologist’s perspective, Zh. Obshch. Biol., 2014, vol. 75, no. 6, pp. 411–465.

    Google Scholar 

  677. Zimmer, R.L. and Woollacott, R.M., Larval morphology of the bryozoan Watersipora arcuata (Cheilostomata: Ascophora), J. Morphol., 1989, vol. 199, pp. 125–150.

    Article  Google Scholar 

  678. Zimmer, R.L., Reproductive biology and development of Phoronida, Ph.D. Thesis, Seattle: Univ. Washington, 1964.

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-14-50110 “Expansion”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Malakhov or M. M. Gantsevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Hypothesen sind Gerüste, die man vor dem Gebäude aufführt und die man abträgt, wenn das Gebäude fertig ist.

(Hypotheses are scaffoldings erected in front of a building and then dismantled when the building is finished).

Johann Wolfgang von Goethe

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, V.V., Gantsevich, M.M. The Origin and Main Trends in the Evolution of Bilaterally Symmetrical Animals. Paleontol. J. 56, 887–937 (2022). https://doi.org/10.1134/S0031030122080044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030122080044

Keywords:

Navigation