Skip to main content
Log in

Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis)

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Recent investigations by means of high-tech morphology, evo-devo studies and molecular data suggest that the taxon Xenacoelomorpha (Nemertodermatida and Acoela plus Xenoturbella), formerly considered as primitive flatworms (Plathelminthes) or even bivalve Mollusca, represents either a quite plesiomorphic grouping as the earliest bilaterian offshoot or but is a substantially reduced and simplified sidebranch of ambulacralian Deuterostomia. Herein, I provide a compilation and review of the current morphological data and possible interpretations of the various character states. Phenotypic and genotypic data suggest monophyly of Xenacoelomorpha. There is no specific similarity between xenacoelmorphs and deuerostome larvae, and reduction appears improbable in free-living and predatory animals. Accordingly, Xenacoelomorpha are more likely similar to Urbilateria rather than degenerated and simplified coelomate deuterostomes. If so, the ground pattern of Bilateria has been retained only partially in the remaining main bilaterian clades (Nephrozoa) after the deviation of the Xenacoelomorpha, namely the nervous system in the Deuterostomia and the body cavity conditions in the acoelomate Lophotrochozoa (particularly Platyzoa), Gastrotricha and cycloneuralian Ecdysozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achatz, J. G., & Martinez, P. (2012). The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers in Zoology, 9(27). 21 pp.

  • Achatz, J. G., Hooge, M., Wallberg, A., Jondelius, U., & Tyler, S. (2010). Systematic revision of acoels with 9+0 sperm ultrastructure (Convolutida) and the influence of sexual conflict on morphology. Journal of Zoological Systematics and Evolutionary Research, 48, 9–32.

    Article  Google Scholar 

  • Achatz, J. G., Chiodin, M., Salvenmoser, W., Tyler, S., & Martinez, P. (2013). The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Organisms, Diversity & Evolution, 13, 267–286.

    Article  Google Scholar 

  • Åkerman, M. (2004). On the behaviour and ecology of Xenoturbella sp. Masters-thesis at the University of Gotenbourg: 40 pp.

  • Åkesson, B., Gschwentner, R., Hendelberg, J., Ladurner, P., Müller, J., & Rieger, R. (2001). Fission in Convolutriloba longifissura: asexual reproduction in acoelous turbellarians revisited. Acta Zoologica (Stockholm), 82, 231–240.

    Google Scholar 

  • Andrade, S., Novo, M., Kawauchi, G., Worsaae, K., Pleijel, F., Giribet, G., & Rouse, G. W. (2015). Articulating the “archiannelids”: a phylogenomic approach to annelid relationships with emphasis on meiofaunal taxa. Molecular Biology & Evolution, 32, 2860–2875.

    Article  Google Scholar 

  • Apelt, G. (1969a). Die Symbiose zwischen dem acoelen Turbellar Convoluta convoluta und Diatomeen der Gattung Licmophora. Marine Biology, 3, 165–187.

    Article  Google Scholar 

  • Apelt, G. (1969b). Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Marine Biology, 4, 267–325.

    Google Scholar 

  • Arendt, D., & Wittbrodt, J. (2001). Reconstructing the eyes of Urbilateria. Philosophical Transactions of the Royal Society of London B: Biological Sciences 356, 1545–1563. doi:10.1098/rstb.2001.0971

  • Ax, P. (1996). Multicellular animals. Vol. 1. A new approach to the phylogenetic order in nature. New York: Springer Verlag. 220 pp.

    Google Scholar 

  • Ax, P., & Schulz, E. (1959). Ungeschlechtliche Fortpflanzung durch Paratomie bei acoelen Turbellarien. Biologisches Zentralblatt, 78, 613–622.

    Google Scholar 

  • Babcock, R. C., & Ryland, J. S. (1990). Larval development of a tropical zoanthid (Protopalythoa sp.). Invertebrate Reproduction & Development, 17, 229–236.

    Article  Google Scholar 

  • Baguña, J., & Riutort, M. (2004a). Molecular phylogeny of the Platyhelminthes. Canadian Journal of Zoology, 82, 168–193.

    Article  Google Scholar 

  • Baguña, J., & Riutort, M. (2004b). The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays, 26, 1046–1057.

    Article  PubMed  CAS  Google Scholar 

  • Baguña, J., Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Londelius, U., & Riutort, M. (2002). The first bilaterian organisms: simple or complex? New molecular evidence. International Journal of Developmental Biology, 45(Suppl), S133–S134.

    Google Scholar 

  • Baguña, J., Martinez, P., Paps, J., & Riutort, M. (2008). Unravelling body-plan and axial evolution in the Bilateria with molecular phylogenetic markers. In A. Minelli & G. Fusco (Eds.), Evolving pathways: key themes in evolutionary developmental biology (pp. 213–235). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bailly, X., Reichert, H., & Hartenstein, V. (2013). The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Development, Genes & Evolution, 223, 149–157.

    Article  Google Scholar 

  • Bailly, X., Laguerre, L., Correc, G., Dupont, S., Kurth, T., Pfannkuchen, A., Entzeroth, R., Probert, I., Vinogradov, S., Lechauve, C., Garet-Delmas, M. J., Reichert, H., & Hartenstein, V. (2014). The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Frontiers in Microbiology, 5(498). 13 pp.

  • Balavoine, G., & Adoutte, A. (2003). The segmented Urbilateria: a testable scenario. Integrative & Comparative Biology, 43, 137–147.

    Article  Google Scholar 

  • Barneah, O., Brickner, I., Hooge, M., Weis, V. M., & Benayahu, Y. (2007). First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction in Waminoa brickneri (Acoelomorpha). Invertebrate Biology, 126, 113–119.

    Article  Google Scholar 

  • Bebenek, I. G., Gates, R. D., Morris, J., Hartenstein, V., & Jacobs, D. K. (2004). sine oculis in basal Metazoa. Development, Genes & Evolution, 214, 342–351.

    Article  CAS  Google Scholar 

  • Bedini, C., & Lanfranchi, A. (1991). The central and peripheral nervous system of Acoela (Plathelminthes). An electron microscopical study. Acta Zoologica (Stockholm), 72, 101–106.

    Article  Google Scholar 

  • Bedini, C., & Papi, F. (1970). Peculiar patterns of microtubular organisation in spermatozoa of lower Turbellaria. In B. Baccetti (Ed.), Comparative Spermatology. Accademia Nazionale dei Lincei (Vol. 137, pp. 363–368). New York: Academic.

    Google Scholar 

  • Bedini, C., & Papi, F. (1974). Fine structure of the turbellarian epidermis. In N. W. Riser & M. P. Morse (Eds.), Biology of the Turbellaria (pp. 108–147). New York: McGraw-Hill.

    Google Scholar 

  • Bedini, C., Ferrero, E., & Lanfranchi, A. (1973). The ultrastructure of the ciliary sensory cells in two Turbellaria Acoela. Tissue & Cell, 5, 359–372.

    Article  CAS  Google Scholar 

  • Bedini, C., Lanfranchi, A., & Santerini, D. (2001). Is GABA present in the nervous system of acoel plathelminthes? An electron immunocytochemical study. Italian Journal of Zoology, 68, 23–27.

    Article  Google Scholar 

  • Bely, A. E., & Sikes, J. M. (2010). Acoel and platyhelminth models for stem-cell research. Journal of Biology, 9(14). 4 pp.

  • Berney, C., Pawlowski, J., & Zaninetti, L. (2000). Elongation factor 1-Alpha sequences do not support an early divergence of the Acoela. Molecular Biology & Evolution, 17, 1032–1037.

    Article  CAS  Google Scholar 

  • Bernt, M., Bleidorn, C., Brabant, A., Dambach, J., Donath, A., Fritzsch, G., Golombek, A., Hadrys, H., Jühling, F., Meusemann, K., Middendorf, M., Misof, B., Perseke, M., Podsiadlowski, L., von Reumont, B., Schierwater, B., Schlegel, M., Schrödl, M., Simon, S., Stadler, P. F., Stöger, I., & Struck, T. H. (2013). A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Molecular Phylogenetics and Evolution, 69(2), 352–364.

    Article  CAS  PubMed  Google Scholar 

  • Bery, A., & Martinez, P. (2011). Acetycholinesterase activity in the developing and regenerating nervous system of the acoel Symsagittifera roscoffensis. Acta Zoologica (Stockholm), 92, 383–392.

    Article  Google Scholar 

  • Bery, A., Cardona, A., Martinez, P., & Hartenstein, V. (2010). Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Development, Genes & Evolution, 220, 61–76.

    Article  Google Scholar 

  • Birstein, V. J. (1990). First contribution to karyology of two acoels (Turbellaria) and a dinophilid (Annelida). Biologisches Zentralblatt, 109, 169–174.

    Google Scholar 

  • Boelsterli, U. (1977). An electron microscopic study of early developmental stages, myogenesis, oogenesis and cnidogenesis in the anthomedusa Podocoryne carnea M. Sars. Journal of Morphology, 154, 259–290.

    Article  CAS  PubMed  Google Scholar 

  • Boguta, K. K. (1972). Early ontogenesis of Anaperus biaculeatus (Turbellaria, Acoela) (in Russian, English abstract). Zoologicheskii Zhurnal, 51, 332–340.

    Google Scholar 

  • Boguta, K. K. (1976). Morphodynamics of the nervous system in the regenerative processes of Convoluta convoluta (Turbellaria, Acoela) (in Russian). Arkhiv Anatomii, Gistologii i Embriologii, 70, 98–103.

    CAS  PubMed  Google Scholar 

  • Boguta, K.K., & Mamkaev, Yu.V. (1972).Structure of the parenchyma of acoelous turbellarians (in Russian). Vestnik Leningradskogo Gosudarstvennogo Universiteta. Seriya Biologii, 1972/2(9), 15–29.

  • Boone, M., Bert, W., Claeys, M., Houthoofd, W., & Artois, T. (2011a). Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology, 130, 273–282.

    Article  Google Scholar 

  • Boone, M., Willems, M., Claeys, M., & Artois, T. (2011b). Spermatogenesis and the structure of the testes in Isodiametra pulchra (Isodiametridae, Acoela). Acta Zoologica (Stockholm), 92, 101–108.

    Article  Google Scholar 

  • Børve, A., & Hejnol, A. (2011). The molecular patterning of the digestive tract of the nemertodermatid Meara stichopi—implication on bilaterian gut evolution. Abstracts of ICIM, 2011, 44.

    Google Scholar 

  • Børve, A., & Hejnol, A. (2014). Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Frontiers in Zoology, 11(50). 14 pp.

  • Bourlat, S. J., Nielsen, C., Lockyer, A. E., Littlewood, D. T., & Telford, M. J. (2003). Xenoturbella is a deuterostome that eats molluscs. Nature (London), 424, 925–928.

    Article  CAS  Google Scholar 

  • Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., Aronowic, J., Kirschner, M., Lander, E. S., Throndyke, M., Nakano, H., Kohn, A. B., Heyland, A., Moroz, L. L., Copley, R. R., & Telford, M. J. (2006). Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature (London), 444, 85–89.

    Article  CAS  Google Scholar 

  • Bourlat, S. J., Nakano, H., Åkerman, M., Telford, M. J., Throndyke, M. C., & Obst, M. (2008). Feeding ecology of Xenoturbella bocki (phylum Xenoturbellida) revealed by genetic barcoding. Molecular Ecology Resources, 8, 18–22.

    Article  CAS  PubMed  Google Scholar 

  • Bourlat, S. J., Rota-Stabelli, O., Lanfear, R., & Telford, M. J. (2009). The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evolutionary Biology, 9(107). 14 pp.

  • Bowie, E., Kaschutnig, P., Intwala, A.R., & Smith, J. III. (2012). The Hedgehog pathway in the basal bilaterian Isodiametra pulchra (Acoelomorpha). Abstracts of South Carolina INBRE. <http://www.birdnest.org/smithj/abstracts/SC_INBRE_Hh.pdf>.

  • Boyer, B. C. (1971). Regulative development in an embryo as shown by cell deletion experiments on the acoel Childia. Journal of Experimental Zoology, 176, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, B. C., & Smith, G. W. (1982). Sperm morphology and development in two acoel turbellarians from the Philippines. Pacific Science, 36, 365–380.

    Google Scholar 

  • Boyer, B. C., Henry, J. Q., & Martindale, M. Q. (1996). Modified spiral cleavage: the duet cleavage pattern and early blastomere fates in the acoel turbellarian Neochildia fusca. Biological Bulletin, 191, 285–286.

    Article  Google Scholar 

  • Boyer, B.C., Henry, J.Q., & Martindale, M.Q. (2001). The development of Neochildia fusca supports the position of the acoels as basal bilaterians. In E. Saló, N.A. Watson, & E. Schockaert (Eds.): Proceedings of the 9th International Symposium “Biology of the Turbellaria”, Barcelona 2000. Belgian Journal of Zoology, 131 (Suppl 1), 59–60.

  • Bresslau, E. (1904). Beiträge zur Entwicklungsgeschichte der Turbellarien. 1. Die Entwicklung der Rhabdocoelen und Alloecoelen. Zeitschrift für wissenschaftliche Zoologie, 76, 213–332. pls. 14-20.

    Google Scholar 

  • Brüggemann, J. (1985a). Ultrastructure and formation of the bursa mouthpiece of Philocelis cellata (Platyhelminthes, Acoela). Hydrobiologia., 128, 23–30.

    Article  Google Scholar 

  • Brüggemann, J. (1985b). Ultrastruktur und Bildungsweise genitaler Hartstrukturen bei freilebenden Plathelminthen. Zoomorphology, 105, 143–189.

    Article  Google Scholar 

  • Brüggemann, J. (1986). Ultrastructural investigations on the differentiation of genital hard structures in free-living platyhelminths and their phylogenetic significance. Hydrobiologia, 132, 151–156.

    Article  Google Scholar 

  • Butts, T., Holland, P. W. H., & Ferrier, D. E. K. (2008). The Urbilaterian Super-Hox cluster. Trends in Genetics, 24, 259–262.

    Article  CAS  PubMed  Google Scholar 

  • Carranza, S., Baguña, J., & Riutort, M. (1997). Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology & Evolution, 14, 485–497.

    Article  CAS  Google Scholar 

  • Chandler, R. M., Thomas, M. B., & Smith, J. P. S., III. (1992). The role of shell granules and accessory cells in eggshell formation in Convoluta pulchra (Turbellaria, Acoela). Biological Bulletin, 182, 54–65.

    Article  Google Scholar 

  • Chernova, E. E., Zabotin, Y. I., & Golubev, A. I. (2012). Ultrastructure of gametes and their formation in the acoel turbellarian Convoluta convoluta (Acoela) (in Russian). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 154, 129–138.

    Google Scholar 

  • Chiodin, M., Achatz, J. G., Wanninger, A., & Martinez, P. (2011). Molecular architecture of muscles in an acoel and its evolutionary implications. Journal of Experimental Zoology, Series B: Molecules, Development & Evolution, 316, 427–439.

    Article  CAS  Google Scholar 

  • Chiodin, M., Børve, A., Berezikov, E., Ladurner, P., Martinez, P., & Hejnol, A. (2013). Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS ONE, 8(2), e55499 (15 pp).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook, C. E., Jiménez, E., Akam, M., & Saló, E. (2004). The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution & Development, 6, 154–163.

    Article  CAS  Google Scholar 

  • Costello, D. P., Henley, C., & Ault, C. (1969). Microtubules in spermatozoa of Childia (Turbellaria, Acoela) revealed by negative staining. Science, 163, 678–679.

    Article  CAS  PubMed  Google Scholar 

  • Crezée, M. (1975). Monograph of the Solenofilomorphidae (Turbellaria: Acoela). Internationale Revue der gesamten Hydrobiologie, 60, 769–845.

    Article  Google Scholar 

  • Crezée, M., & Tyler, S. (1976). Hesiolicium gen.n. (Turbellaria, Acoela) and observations on its ultrastructure. Zoologica Scripta, 5, 207–216.

    Article  Google Scholar 

  • De Mendoza, A., & Ruiz-Trillo, I. (2011). The mysterious evolutionary origin for the GNE gene and the root of Bilateria. Molecular Biology & Evolution, 28, 2987–2991.

    Article  CAS  Google Scholar 

  • De Mulder, K., Kuales, G., Pfister, D., Willems, M., Egger, B., Salvenmoser, W., Thaler, M., Gorny, A.-K., Hrouda, M., Borgonie, G., & Ladurner, P. (2009). Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Developmental Biology, 9(69). 17 pp.

  • Deutsch, J. S. (2008). Do acoels climb up the “Scale of Beings”? Evolution & Development, 10, 135–240.

    Article  Google Scholar 

  • Deutsch, J. S., & LeGuyader, H. (1998). The neuronal zootype. An hypothesis. Comptes Rendus de l’Academie des Sciences de Paris, III, 321, 713–719.

    CAS  Google Scholar 

  • Dewel, R. A. (1999). Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. Journal of Morphology, 243, 355–374.

    Google Scholar 

  • Doe, D. A. (1981). Comparative ultrastructure of the pharynx simplex in Turbellaria. Zoomorphology, 97, 133–193.

    Article  Google Scholar 

  • Dorey, A. E. (1965). The organization and replacement of the epidermis in acoelous turbellarians. Quarterly Journal of microscopical Science, 106, 147–172.

    CAS  PubMed  Google Scholar 

  • Drobysheva, I.M. (1979). New data on the morphology of Convoluta convoluta (Turbellaria, Acoela). In: Evolutionary morphology in invertebrates (in Russian, English abstract). Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 84, 3–6, pls. 1–2.

  • Drobysheva, I. M. (1983). Autoradiographic study of the digestive parenchyma in Convoluta convoluta (Turbellaria, Acoela) (in Russian, English abstract). Tsitologiya, 25, 1270–1277. pls. 1–2.

    Google Scholar 

  • Drobysheva, I. M. (1986). Physiological regeneration of the digestive parenchyma in Convoluta convoluta and Oxyposthia praedator (Turbellaria, Acoela). Hydrobiologia, 132, 189–193.

    Article  Google Scholar 

  • DuBuc, T. Q., Ryan, J. F., Shinzato, C., Satoh, N., & Martindale, M. Q. (2012). Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integrative & Comparative Biology, 52, 835–841.

    Article  CAS  Google Scholar 

  • Duffy, J. E., & Tyler, S. (1984). Quantitative differences in mitochondrial ultrastructure of a thiobiotic and an oxybiotic turbellarian. Marine Biology, 83, 95–102.

    Article  Google Scholar 

  • Egger, B., Steinke, D., Tarui, H., Funayama, N., Gschwentner, R., Hartenstein, V., Hobmayer, B., Hooge, M., Hrouda, M., Ishida, S., Kobayashi, C., Kuales, G., Nishimura, O., Pfister, D., Rieger, R., Salvenmoser, W., Smith, J. P. S. I. I. I., Technau, U., Tyler, S., Agata, K., Salzburger, W., & Ladurner, P. (2009). To be or not to be a flatworm: the acoel controversy. PLoS ONE, 4(5), e5502 (10 pp).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehlers, U. (1985). Das phylogenetische system der Plathelminthes. Stuttgart: Gustav Fischer. 317 pp.

    Google Scholar 

  • Ehlers, U. (1991). Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. In: S. Tyler (Ed.): Turbellarian Biology. Hydrobiologia, 227, 263–271.

    Article  Google Scholar 

  • Ehlers, U. (1992a). Dermonephridia-modified epidermal cells with a probable excretory function in Paratomella rubra (Acoela, Plathelminthes). Microfauna Marina, 7, 253–264.

    Google Scholar 

  • Ehlers, U. (1992b). On the fine structure of Paratomella rubra Rieger and Ott (Acoela) and the position of the taxon Paratomella Dörjes in a phylogenetic system of the Acoelomorpha (Plathelminthes). Microfauna Marina, 7, 265–293.

    Google Scholar 

  • Ehlers, U. (1992c). “Pulsatile bodies” in Anaperus tvaerminnensis (Luther, 1912) (Acoela, Plathelminthes) are degenerating epidermal cells. Microfauna Marina, 7, 295–310.

    Google Scholar 

  • Ehlers, U. (1992d). Frontal glandular and sensory structures in Nemertoderma (Nermertodermatida) and Paratomella (Acoela): ultrastructure and phylogenetic implications for the monophyly of the Euplathelminthes (Plathelminthes). Zoomorphology, 112, 227–236.

    Article  Google Scholar 

  • Ehlers, U. (1994). Ultrastructure of the unusual body-wall musculature of Anaperus tvaerminnensis (Acoela, Plathelminthes). Microfauna Marina, 9, 291–301.

    Google Scholar 

  • Ehlers, U., & Sopott-Ehlers, B. (1997a). Xenoturbella bocki: organization and phylogenetic position as sister taxon of the Bilateria. Verhandlungen der Deutschen Zoologischen Gesellschaft, 90(1), 168.

    Google Scholar 

  • Ehlers, U., & Sopott-Ehlers, B. (1997b). Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology, 117, 71–79.

    Article  Google Scholar 

  • Erwin, D. H. (2009). Early origin of the bilaterian developmental toolkit. Philosohpical Transactions of the Royal Society of London, B, 364, 2253–2261.

    Article  CAS  Google Scholar 

  • Erwin, D. A., & Davidson, E. H. (2002). The last common bilaterian ancestor. Development, 129, 3021–3032.

    CAS  PubMed  Google Scholar 

  • Extavour, C. G. M. (2008). Urbisexuality: the evolution of bilaterian germ cell specification and reproductive systems. In A. Minelli & G. Fusco (Eds.), Evolving pathways: key themes in evolutionary developmental biology (pp. 321–342). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Falleni, A., & Gremigni, V. (1989). Egg covering formation in the acoel Convoluta psammophila (Platyhelminthes, Turbellaria): an ultrastructural and cytochemical investigation. Acta Embryologiae et Morphologiae Experimentalis (N.S.), 10, 105–112.

    Google Scholar 

  • Falleni, A., & Gremigni, V. (1990). Ultrastructural study of oogenesis in the acoel turbellarian Convoluta. Tissue & Cell, 22, 301–310.

    Article  CAS  Google Scholar 

  • Falleni, A., Raikova, O., & Gremigni, V. (1995). Ultrastructural and cytochemical features of the ovary in Paratomella rubra (Platyhelminthes, Acoela). Journal of submicroscopical Cytology and Pathology, 27, 511–523.

    Google Scholar 

  • Ferrero, E. A. (1973). A fine structure analysis of the statocyst in Turbellaria Acoela. Zoologica Scripta, 2, 5–16.

    Article  Google Scholar 

  • Ferrero, E. A., & Bedini, C. (1991). Ultrastructural aspects of nervous-system and statocyst morphogenesis during embryonic development of Convoluta psammophila (Turbellaria, Acoela). In S. Tyler (Ed.), Turbellarian Biology. Hydrobiologia, 227, 131–137.

    Article  Google Scholar 

  • Franzén, A. (1989). Xenoturbella bocki, en unik djurart fran svenska vastkusten. Fauna och Flora, 84, 251–261.

    Google Scholar 

  • Franzén, A., & Afzelius, B. A. (1987). The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zoologica Scripta, 16, 9–17.

    Article  Google Scholar 

  • Fritzsch, G., Böhme, M. U., Thorndyke, M., Nakano, H., Israelsson, O., Stach, T., Schlegel, M., Hankeln, T., & Stadler, P. F. (2008). PCR survey of Xenoturbella bocki Hox Genes. Journal of Experimental Biology, B: Molecular Biology & Evolution, 310, 278–284.

    Google Scholar 

  • Gaerber, G. W., Salvenmoser, W., Rieger, R. M., & Gschwentner, R. (2007). The nervous system of Convolutriloba (Acoela) and its patterning during regeneration after asexual reproduction. Zoomorphology, 126, 72–87.

    Article  Google Scholar 

  • Gazizova, G. R., Zabotin, Y. I., Malyutina, L. V., & Golubev, A. I. (2013). Structure of parenchyma in turbellarians: ultrastructural and phylogenetic aspects (in Russian, English abstract). Uchenye Zapinski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 155, 99–115.

    Google Scholar 

  • Gee, H. (2003). Zoology: you aren’t what you eat [comment to Bourlat et al. 2003]. Nature (London), 424, 885–886.

    Article  CAS  Google Scholar 

  • Ghysen, A. (2003). The origin and evolution of the nervous system. International Journal of Developmental Biology, 47, 555–562.

    PubMed  Google Scholar 

  • Grande, C., Martín-Durán, J. M., Kenny, N. J., Truchado-Garcia, M., & Hejnol, A. (2014). Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria. International Journal of Developmental Biology, 58, 521–532.

    Article  PubMed  Google Scholar 

  • Gruhl, A., Wegener, I., & Bartolomaeus, T. (2009). Ultrastructure of the body cavities in Phylactolaemata (Bryozoa). Journal of Morphology, 270, 306–318.

    Article  PubMed  Google Scholar 

  • Gschwentner, R., Ladurner, P., Salvenmoser, W., Rieger, R., & Tyler, S. (1999). Fine structure and evolutionary significance of sagittocysts of Convolutriloba longifissura (Acoela, Platyhelminthes). Invertebrate Biology, 118, 332–345.

    Article  Google Scholar 

  • Gschwentner, R., Ladurner, P., Nimeth, K., & Rieger, R. (2001). Stem cells in a basal bilaterian: S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell & Tissue Research, 304, 401–408.

    Article  CAS  Google Scholar 

  • Gschwentner, R., Baric, S., & Rieger, R. (2002). New model for the formation and function of sagittocysts: Symsagittifera corsicae n.sp. (Acoela). Invertebrate Biology, 121, 95–103.

    Article  Google Scholar 

  • Gschwentner, R., Müller, M., Ladurner, P., Rieger, R., & Tyler, S. (2003). Unique patterns of longitudinal body-wall musculature in the Acoela: the ventral musculature of Convolutriloba longifissura. Zoomorphology, 122, 55–62.

    Google Scholar 

  • Gureeva, M. A. (1985). Enantiomorphism during cleavage of acoelic turbellarians. Doklady of the Academy of Sciences of the U.S.S.R., 281, 116–117.

    Google Scholar 

  • Gureeva, M. A., & Mamkaev, Y. V. (1985a). Morphological egg-cleavage patterns in acoelous turbellarians (Acoela). 1. Variants of egg-cleavage patterns in the genus Convoluta (in Russian, English abstract). Zoologicheskii Zhurnal, 64, 1621–1631.

    Google Scholar 

  • Gureeva, M. A., & Mamkaev, Y. V. (1985b). Morphological egg-cleavage patterns in acoelous turbellarians (Acoela). Variants of egg-cleavage patterns in Oxyposthia predator (in Russian, English abstract). Zoologicheskii Zhurnal, 64, 1783–1794.

    Google Scholar 

  • Gureeva, M.A., & Mamkaev, Yu.V. (1989). Embryonal development of Oxyposthia preadator (Turbellaria, Acoela): implications to the problem of the primitivity of the Acoela (in Russian). In Yu.V. Mamkaev & B.I. Joffe (Eds.), Morphology of Turbellarians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 195, 3–13, pls. 2–4.

  • Hanson, E. D. (1967). Regeneration in acoelous flatworms: the role of the peripheral parenchyma. Roux’ Archiv der Entwicklungsmechanik, 159, 298–313.

    Article  Google Scholar 

  • Haszprunar, G. (1986). Feinmorphologische Untersuchungen an Sinnesstrukturen ursprünglicher Solenogastres (Mollusca). Zoologischer Anzeiger, 217, 345–362.

    Google Scholar 

  • Haszprunar, G. (1996a). Plathelminthes and Plathelminthomorpha—paraphyletic taxa. Journal of Zoological Systematics and Evolutionary Research, 34, 41–48.

    Article  Google Scholar 

  • Haszprunar, G. (1996b). The Mollusca: coelomate turbellarians or mesenchymate annelids? In J. D. Taylor (Ed.), Origin and evolutionary radiation of the Mollusca (pp. 1–28). Oxford: Oxford University Press.

    Google Scholar 

  • Haszprunar, G. (2011). Species delimitations—not ‘only descriptive’. Organisms, Diversity & Evolution, 11, 249–252.

    Article  Google Scholar 

  • Hejnol, A. (2015a). Acoelomorpha and Xenoturbellida. In A. Wanninger (Ed.), Evolutionary developmental biology of invertebrates vol. 1: introduction, non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha. Wien, Springer Verlag, pp. 203–214.

  • Hejnol, A. (2015b). Acoelomorpha. In: A. Schmidt-Rhaesa, S. Harzsch, & G. Purschk (Eds.), Structure and evolution of invertebrate nervous systems. Oxford, Oxford University Press (in press).

  • Hejnol, A., & Martindale, M.Q. (2008a). Acoel development supports a simple planula-like urbilaterian. In M.J. Telford & D.T.J. Littlewood (Eds.), Evolution of the animals—a Linnean terceniary celebration. Philosophical Transactions of the Royal Society of London, B 363, 1493–1501.

  • Hejnol, A., & Martindale, M. Q. (2008b). Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature (London), 456, 382–384.

    Article  CAS  Google Scholar 

  • Hejnol, A., & Martindale, M. Q. (2008c). From nerve net to CNS—evolutionary impacts from the development of an acoel. Abstracts of ICIM-1. Journal of Morphology, 269, 1459.

    Google Scholar 

  • Hejnol, A., & Martindale, M. Q. (2009). Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biology, 7(65). 17 pp.

  • Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger, 256, 61–74.

    Article  Google Scholar 

  • Hendelberg, J. (1969). On the development of different types of spermatozoa from spermatids with two flagella in the Turbellaria with remarks on the ultrastructure of the flagella. Zoologiska Bidrag Uppsala, 38, 1–52.

    Google Scholar 

  • Hendelberg, J. (1974). Spermiogenesis, sperm morphology, and biology of fertilization in the Turbellaria. In N. W. Riser & M. P. Morse (Eds.), Biology of the Turbellaria (pp. 148–164). New-York: McGraw-Hill.

    Google Scholar 

  • Hendelberg, J. (1976). Granules of glycogen beta-particle type demonstrated in epidermal ciliary rootlets of acoelous turbellarians. Journal of Ultrastructure Research, 54, 491.

    Google Scholar 

  • Hendelberg, J. (1977). Comparative morphology of turbellarian spermatozoa studied by electron microscopy. Acta Zoologica Fennica, 154, 149–162.

    Google Scholar 

  • Hendelberg, J. (1981). The system of epidermal ciliary rootlets in Turbellaria. Hydrobiologia, 84, 240.

    Article  Google Scholar 

  • Hendelberg, J., & Hedlund, K.-O. (1974). On the morphology of the epidermal ciliary rootlet system of the acoelous turbellarian Childia groenlandica. Zoon, 2, 13–24.

    Google Scholar 

  • Henley, C. (1968). Refractile bodies in the developing and mature spermatozoa of Childia groenlandica (Turbellaria: Acoela) and their possible significance. Biological Bulletin, 134, 382–397.

    Article  CAS  PubMed  Google Scholar 

  • Henley, C. (1974). Platyhelminthes (Turbellaria). In A. C. Giese & J. S. Pearse (Eds.), Reproduction of marine invertebrates. Vol. I. Acoelomate and pseudocoelomate metazoans (pp. 267–343). New York: Academic.

    Chapter  Google Scholar 

  • Henley, C., & Costello, D. P. (1969). Microtubules in spermatozoa of some turbellarian flatworms. Biological Bulletin, 137, 403.

    Google Scholar 

  • Henley, C., Costello, D. P., & Ault, C. R. (1968). Microtubules in the axial filament complexes of acoel turbellarian spermatozoa as revealed by negative staining. Biological Bulletin, 135, 422–423.

    Google Scholar 

  • Henry, J. Q., Martindale, M. Q., & Boyer, B. C. (2000). The unique developmental program of the acoel flatworm, Neochildia fusca. Developmental Biology, 220, 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Hirose, E., & Hirose, M. (2007). Body colors and algal distribution in the acoel flatworm Convolutriloba longifissura: histology and ultrastructure. Zoological Sciences, 24, 1241–1246.

    Article  Google Scholar 

  • Hoffmann, F. G., Opazo, J. C., Hooewijs, D., Hankeln, T., Ebner, B., Vinogradov, S. N., Bailly, X., & Storz, J. F. (2012). Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition. Molecular Biology & Evolution, 29, 1735–1745.

    Article  CAS  Google Scholar 

  • Holland, L. Z., Carvalho, J. E., Escriva, H., Laudet, V., Schubert, M., Shimeld, S. M., & Yu, J.-K. (2013). Evolution of bilaterian central nervous systems: a single origin? EvoDevo, 4(27). 20 pp.

  • Hooge, M. D. (2001). Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). Journal of Morphology, 249, 171–194.

    Article  CAS  PubMed  Google Scholar 

  • Hooge, M. D. (2003). Two new families, three new genera, and four new species of acoel flatworms (Acoela, Platyhelminthes) from Queensland, Australia. Cahiers de Biologie Marine, 44, 275–298.

    Google Scholar 

  • Hooge, M. D., & Tyler, S. (2005). New tools for resolving phylogenies: a systematic revision of the Convolutidae (Acoelomorpha, Acoela). Journal of Zoological Systematics and Evolutionary Research, 43, 100–113.

    Article  Google Scholar 

  • Hooge, M. D., & Tyler, S. (2006). Concordance of molecular and morphological data: the example of the Acoela. Integrative & Comparative Biology, 46, 118–124.

    Article  CAS  Google Scholar 

  • Hooge, M. D., & Tyler, S. (2015). Two new acoels (Acoelomorpha) of the genus Haplogonaria from the northwest Atlantic. Zootaxa, 4013, 111–119.

    Article  PubMed  Google Scholar 

  • Hooge, M. D., Haye, P. A., Tyler, S., Litvaitis, M. K., & Kornfield, I. (2002). Molecular systematics of the Acoela (Acoelomorpha, Platyhelminthes) and its concordance with morphology. Molecular Phylogenetics & Evolution, 24, 333–342.

    Article  CAS  Google Scholar 

  • Hooge, M. D., Wallberg, A., Todt, C., Maloy, A., Jondelius, U., & Tyler, S. (2007). A revision of the systematics of panther worms (Hofstenia spp., Acoela), with notes on color variation and genetic variation within the genus. Hydrobiologia, 592, 439–454.

    Article  CAS  Google Scholar 

  • Hori, I., Hikosaka-Katayama, T., & Kishida, Y. (1999). Cytological approach to morphogenesis in the planarian blastema. III. Ultrastructure and regeneration of the acoel turbellarian Convoluta naikaiensis. Journal of Submicroscopical Cytology and Pathology, 31, 247–258.

    Google Scholar 

  • Hrouda, M. (2007) Molecular analysis of the evolution of bilaterian body axes: Wnt and Bmp—signalling in Isodiametra pulchra and Macrostomum lignano (Acoelomorpha, Macrostomorpha; Platyhelminthes). Dissertation, University of Innsbruck.

  • Israelsson, O. (1997). … molluscan embryogenesis. [see Noren & Jondelius, 1997]. Nature (London), 390, 32.

    Article  CAS  Google Scholar 

  • Israelsson, O. (1999a). New light on the enigmatic Xenoturbella (phylum uncertain): ontogeny and phylogeny. Proceedings of the Royal Society of London, B, 266, 835–841.

    Article  Google Scholar 

  • Israelsson, O. (1999b). Morphology and metabolism of the enigmatic Xenoturbella (Bivalvia, Protobranchia; formerly phylum uncertain). Abstracts of the 65th Annual Meeting of the AMS, Pittsburgh 1999, 35.

  • Israelsson, O. (2001). Xenoturbella (phylum uncertain): the appearance and loss of everything during its development. In L. Salvini-Plawen, J. Voltzow, H. Sattmann, & G Steiner (Eds.), Abstracts of the World Congress of Malacology 2001 inVienna, 161.

  • Israelsson, O. (2006). Observations on some unusual cell types in the enigmatic worm Xenoturbella (phylum uncertain). Tissue & Cell, 38, 233–242.

    Article  CAS  Google Scholar 

  • Israelsson, O. (2007a). Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). Journal of Invertebrate Pathology, 96, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Israelsson, O. (2007b). Ultrastructural aspects of the ‘statocyst’ of Xenoturbella (Deuterostomia) cast doubt on its function as a georeceptor. Tissue & Cell, 39, 171–177.

    Article  CAS  Google Scholar 

  • Israelsson, O. (2008). Xenoturbella (Deuterostomia) probably feeds on dissolved organic matter. Marine Biology Research, 4, 384–391.

    Article  Google Scholar 

  • Israelsson, O., & Budd, G. E. (2005). Eggs and embryos in Xenoturbella (phylum uncertain) are not ingested prey. Development, Genes & Evolution, 215, 358–363.

    Article  CAS  Google Scholar 

  • Ivanov, V. P., & Mamkaev, Y. V. (1977). Über die Struktur des Digestionsparenchyms bei Turbellaria Acoela. Acta Zoologica Fennica, 154, 59–61.

    Google Scholar 

  • Ivanov, V. P., Mamkaev, Y. V., & Pevzner, R. A. (1972). Electron microscopic study of the statocyst of Convoluta convoluta, a turbellarian of the order Acoela (in Russian, English translation provided by Seth Tyler). Journal of Evolutionary Biochemistry & Physiology, 8, 162–168.

    Google Scholar 

  • Jiménez-Guri, E., Paps, J., Garcia-Fernandez, J., & Saló, E. (2006). Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. International Journal of Developmental Biology, 50, 675–679.

    Article  PubMed  CAS  Google Scholar 

  • Joffe, B. I. (1991). On the number and spatial distribution of the catocholamine-containing (GA-positive) neurons in some higher and lower turbellarians—a comparison. In S. Tyler (Ed.): Turbellarian Biology. Hydrobiologia, 227, 201–208.

    Article  Google Scholar 

  • Jondelius, U., Ruiz-Trillo, I., Baguña, J., & Riutort, M. (2002). The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta, 31, 201–216.

    Article  Google Scholar 

  • Jondelius, U., Larsson, K., & Raikova, O. (2004). Cleavage in Nemertoderma westbladi (Nemertodermatida) and its phylogenetic significance. Zoomorphology, 123, 221–225.

    Article  Google Scholar 

  • Jondelius, U., Wallberg, A., Hooge, M., & Raikova, O. I. (2011). How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Systematic Biology, 60, 845–875.

    Article  PubMed  Google Scholar 

  • Justine, J.-L., Iomini, C., Raikova, O. I., & Mollaret, I. (1998). The homology of cortical microtubules in platyhelminth spermatozoa: a comparative immunocytochemical study of acetylated tubulin. Acta Zoologica (Stockholm), 79, 235–241.

    Article  Google Scholar 

  • Katayama, T., Nishioka, M., & Yamamoto, M. (1996). Phylogenetic relationships of turbellarian orders inferred from 18S rDNA sequences. Zoological Science (Tokyo), 13, 747–756.

    Article  CAS  Google Scholar 

  • Katayama, T., Yamamoto, M., Wada, H., & Satoh, N. (1993). Phylogenetic position of acoel turbellarians inferred from 18S rDNA sequences. Zoological Sciences (Tokyo), 10, 529–536.

    CAS  Google Scholar 

  • Kjeldsen, K. U., Obst, M., Nakano, H., Funch, P., & Schramm, A. (2010). Two types of endosymbiotic bacteria in the enigmatic marine worm Xenoturbella bocki. Applied & Environmental Microbiology, 76(2657), 2662.

    Google Scholar 

  • Klauser, M. D., Smith, J. P. S. I. I. I., & Tyler, S. (1985). Ultrastructure of the frontal organ in Convolutapulchra” and Macrostomum spp.: significance for models of the turbellarian archetype. Hydrobiologia, 132, 47–52.

    Article  Google Scholar 

  • Klima, J. (1967). Zur Feinstruktur des acoelen Süßwasser-Turbellars Oligochoerus limnophilus Ax & Dörjes. Berichte des naturwissenschaftlich-medizinischen Vereins zu Innsbruck, 55, 107–124.

    Google Scholar 

  • Kotikova, E. A., & Raikova, O. I. (2008). Architectonics of the central nervous system of Acoela, Platyhelminthes, and Rotifera. Journal of Evolutionary Biochemistry & Physiology, 44, 95–108.

    Article  Google Scholar 

  • Kozloff, E. N. (2000). Differentiation, dedifferentiation, and redifferentiation of reproductive structures of the acoel flatworm Otocelis luteola, and notes on longevity of this species. Invertebrate Reproduction & Development, 37, 95–106.

    Article  Google Scholar 

  • Kuzmina, T. V., & Malakhov, V. V. (2015). The accessory hearts of the articulate brachiopod Hemithyris psittacea. Zoomorphology, 134, 25–32.

    Article  Google Scholar 

  • Ladurner, P., & Rieger, R. (2000). Embryonic muscle development of Convoluta pulchra (Turbellaria—Acoelomorpha, Platyhelminthes). Developmental Biology, 222, 359–375.

    Article  CAS  PubMed  Google Scholar 

  • Lagutenko, Y. P., Mamkajev, Y. V., & Popova, N. V. (1989). The ultrastructure of interneuron and neuromuscle synapses in the acoelous Turbellaria. Tsitologiya, 31, 391–397.

    Google Scholar 

  • Lanfranchi, A. (1990). Ultrastructure of the epidermal eyespot of an acoel platyhelminth. Tissue & Cell, 22, 541–546.

    Article  CAS  Google Scholar 

  • Lechauve, C., Jager, M., Laguerre, L., Kiger, L., Correc, G., Leroux, C., Vinogradov, S., Czjzek, M., Marden, M. C., & Bailly, X. (2013). Neuroglobins, pivotal proteins associated with emerging neural systems and precursors of metazoan globin diversity. Journal of Biological Chemistry, 288, 6957–6967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littlewood, D. T. J., Olson, P. D., Telford, M. J., Herniou, E. A., & Riutort, M. (2001). Elongation factor 1-alpha sequences alone do not assist in resolving the position of the Acoela within the Metazoa. Molecular Biology & Evolution, 18, 437–442.

    Article  CAS  Google Scholar 

  • Litvaitis, M. K., & Rohde, K. (1999). A molecular test of platyhelminth phylogeny: inferences from partial 28S rDNA sequences. Invertebrate Biology, 118, 42–56.

    Article  Google Scholar 

  • Lopes, R. M., & Silveira, M. (1994). Symbiosis between a pelagic flatworm and a dinoflagellate from a tropical area: structural observations. Hydrobiologia, 287, 277–284.

    Article  Google Scholar 

  • Lundin, K. (1997). Comparative ultrastructure of the epidermal ciliary rootlets and associated structures in species of the Nemertodermatida and Acoela (Plathelminthes). Zoomorphology, 117, 81–92.

    Article  Google Scholar 

  • Lundin, K. (1998a). The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the Acoelomorpha (Platyhelminthes). Zoologica Scripta, 27, 263–270.

    Article  Google Scholar 

  • Lundin, K. (1998b). Symbiotic bacteria on the epidermis of species of the Nemertodermatida (Platyhelminthes, Acoelomorpha). Acta Zoologica (Stockholm), 79, 187–191.

    Article  Google Scholar 

  • Lundin, K. (2000a). Phylogeny of the Nemertodermatida (Acoelomorpha, Plathelminthes). A cladistic study. Zoologica Scripta, 29, 65–74.

    Article  Google Scholar 

  • Lundin, K. (2000b). Xenoturbella - det motsägelsefulla djuret [in Swedish, English abstract: Xenoturbella—a creature of contradiction]. Fauna och Flora, 95, 44–48.

    Google Scholar 

  • Lundin, K. (2001). Degenerating epidermal cells in Xenoturbella (phylum uncertain), Nemertodermatida and Acoela (Platyhelminthes). In E. Salo, N.A. Watson, & E. Schockaert (Eds.), Proceedings of the 9th International Symposium: Biology of the Turbellaria. Belgian Journal of Zoology, 131 (Suppl. 1), 153–157.

  • Lundin, K., & Hendelberg, J. (1995). Ultrastructure of the epidermis of Meara stichopi (Platyhelminthes, Nemertodermatida) and associated extra-epidermal bacteria. In L.R.G. Cannon (Ed.), Biology of Turbellaria and related flatworms. Hydrobiologia, 305, 161–165.

    Article  Google Scholar 

  • Lundin, K., & Hendelberg, J. (1996). Degenerating epidermal bodies (“pulsatile bodies”) in Meara stichopi (Plathelminthes, Nemertodermatida). Zoomorphology, 116, 1–5.

    Article  Google Scholar 

  • Lundin, K., & Hendelberg, J. (1998). Is the sperm type of the Nemertodermatida close to that of the ancestral Platyhelminthes? Hydrobiologia, 383, 197–205.

    Article  Google Scholar 

  • Lundin, K., & Sterrer, W. (2001). The Nemertodermatida. In D.T.J. Littlewood & R.A. Bray (Eds.), Interrelationships of the Platyhelminthes. Systematic Association Special Volume Series, 60, 24–27, London, Francis & Taylor.

  • Mamkaev, Y. V. (1986). Initial morphological diversity as a criterion in deciphering turbellarian phylogeny. Hydrobiologia, 132, 31–32.

    Article  Google Scholar 

  • Mamkaev, Y. V., & Ivanov, V. P. (1970). Electron microscopy investigation of spermatozoa of Convoluta convoluta (Turbellaria, Acoela). Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 1970, 12–13.

    Google Scholar 

  • Mamkaev, Y. V., & Drobysheva, I. M. (1971). Multiple formation of seminal sacs and their papillae in the acoelous turbellarian Convoluta convoluta (Abildgaard). Doklady of the Academy of Sciences of the U.S.S.R. (Biological Sciences), 196, 144–146.

    Google Scholar 

  • Mamkaev, Y. V., & Kotikova, E. A. (1972). On the morphological characters of nervous system in Acoela (in Russian, English abstract). Zoologicheskii Zhurnal, 51, 477–489.

    Google Scholar 

  • Mamkaev, Y. V., & Markosova, T. G. (1979). Electron microscopic studies of the parenchyma in some representatives of the Acoela (in Russian). Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 84, 7–12.

    Google Scholar 

  • Mamkaev, Y. V., & Markosova, T. G. (1981). Peculiarities of feeding and digestion of Oxyposthia praedator (Turbellaria, Acoela). Proceedings of the XIV. Pacific Science Congress, issue, 4, 97–102.

    Google Scholar 

  • Mamkaev, Y. V., & Markosova, T. G. (1986). Features of the feeding of Acoela (Turbellaria). In V. G. Gagarin (Ed.), Behaviour of aquatic invertebrates. 4th All-Union Symposium Borok 1983 (pp. 47–53). Andropov: Academii Nauk SSSR.

    Google Scholar 

  • Mamkaev, Y. V., & Kostenko, A. G. (1991). On the phylogenetic significance of sagittocysts and copulatory organs in acoel turbellarians. In S. Tyler (Ed.): Turbellarian biology. Hydrobiologia, 227, 307–314.

    Article  Google Scholar 

  • Markosova, T.G. (1987). Pathways of intracellular digestion and transport in the turbellarian Oxyposthia preadator Ivanov (in Russian, English abstract). In Yu.V. Mamkaev (Ed.), Morphology of Turbellarians, Pogonophores, and Ascidians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 167, 79–84, pls. 8–13.

  • Markosova, T.G. (1989). [A TEM-cytochemical study on endocytosis and intracellular digestion in the epidermal cells of Convoluta convoluta (Turbellaria, Acoela)] (in Russian, English abstract). In Yu.V. Mamkaev & B.I. Joffe (Eds.), Morphology of Turbellaria. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 195, 26–35, pls.5–8.

  • Markosova, T. G., & Mamkaev, Y. V. (2000). Morphofunctional study of the organization of the peripheral parenchyma of Acoela Oxyposthia praedator (in Russian, English abstract). Tsitologiya, 42, 740–749.

    CAS  Google Scholar 

  • Martin, G. G. (1978). Ciliary gliding in lower invertebrates. Zoomorphologie, 91, 249–261.

    Article  Google Scholar 

  • Matus, D. Q., Pang, K., Marlow, H., Dunn, C. W., Thomsen, G. H., & Martindale, M. Q. (2006). Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proceedings of the National Academy of Sciences of the USA, 102, 11195–11200.

    Article  CAS  Google Scholar 

  • Meyer-Rochow, V. B. (2000). The eye: monophyletic, polyphyletic or perhaps biphyletic? Trends in Genetics, 16, 244–245.

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Wachsmuth, I., Raikova, O. I., & Jondelius, U. (2013). The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology, 132, 239–252.

    Article  Google Scholar 

  • Meyer-Wachsmuth, I., Curini-Galletti, M., & Jondelius, U. (2014). Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLoS ONE, 9(9), e107688. 25 pp plus Supplement.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreno, E., & Martinéz, P. (2010). Origin of the bilaterian Hox patterning system. In: Encyclopedia of life sciences (ELS). Wiley. doi: 10.1002/9780470015902.a0022852.

  • Moreno, E., Nadal, M., Baguña, J., & Martínez, P. (2009). Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evolution & Development, 11, 574–581.

    Article  CAS  Google Scholar 

  • Moreno, E., DeMulder, K., Salvenmoser, W., Ladurner, P., & Martinéz, P. (2010). Inferring the ancestral function of the posterior Hox gene within the Bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evolution & Development, 12, 258–266.

    Article  CAS  Google Scholar 

  • Moreno, E., Permanyer, J., & Martinéz, P. (2011). The origin of patterning systems in Bilateria—insights from the Hox and ParaHox genes in Acoelomorpha. Genomics, Proteomics & Bioinformatics, 9, 65–76.

    Article  CAS  Google Scholar 

  • Mwinyi, A., Vailly, X., Bourlat, S. J., Jondelius, U., Littlewood, D. T. J., & Podsiadlowski, L. (2010). The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evolutionary Biology, 10(309). 14 pp.

  • Nakano, H. (2015). What is Xenoturbella? Zoological Letters, 1(22). 8 pp.

  • Nakano, H., Lundin, K., Bourlat, S. J., Telford, M. J., Funch, P., Nyengaard, J. R., Obst, M., & Thorndyke, M. (2013). Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nature Communications, 4(1537). 6 pp.

  • Nielsen, C. (1985). Animal phylogeny in the light of the trochaea theory. Biological Journal of the Linnean Society, 25, 243–299.

    Article  Google Scholar 

  • Nielsen, C. (2010). After all: Xenoturbella is an acoelomorph! Evolution & Development, 12(3), 241–243.

    Article  Google Scholar 

  • Nielsen, C. (2012). Animal evolution. Interrelationships of the living phyla (3rd ed.). Oxford: Oxford University Press. 402 pp.

    Google Scholar 

  • Nielsen, C. (2013). Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evolutionary Biology, 13(171). 18 pp.

  • Nielsen, C., & Martinez, P. (2003). Patterns of gene expression: homology or homocrazy? Development, Genes & Evolution, 213, 149–154.

    Google Scholar 

  • Norén, M., & Jondelius, U. (1997). Xenoturbella’s molluscan relatives ….. [see Israelsson 1997]. Nature (London), 390, 31–32.

    Article  Google Scholar 

  • Northcutt, R. G. (2012). Evolution of centralized nervous systems: two schools of evolutionary thought. Proceedings of the National Academy of Sciences of the USA, 109(S1), 10626–10633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obst, M., Nakano, H., Bourlat, S.J., Thorndyke, M.C., Telford, M.J., Nyengaard, J.R., & Funch, P. (2008). The spermatozoon ultrastructure of Xenoturbella suggests a close relationship to enteropneust hemichordates. Abstracts of the 1st ISIM-Congress, Copenhagen. Journal of Morphology, 269, 1478.

  • Obst, M., Lundin, K., & Nakano, H. (2011a). Larval morphology of Xenoturbella. Abstracts of the ICIM2011, 114.

  • Obst, M., Nakano, H., Bourlat, S. J., Thorndyke, M. C., Telford, M. J., Nyengaard, J. R., & Funch, P. (2011b). Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zoologica (Stockholm), 92, 109–115.

    Article  Google Scholar 

  • Ogishima, S., & Tanaka, H. (2006). Missing link in the evolution of Hox clusters. Gene, 387, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Oschman, J. L. (1967). Microtubules in the subepidermal glands of Convoluta roscoffensis (Acoela, Turbellaria). Transactions of the American Microscopical Society, 86, 159–162.

    Article  Google Scholar 

  • Oschman, J. L., & Gray, P. (1965). A study on the fine structure of Convoluta roscoffensis and its endosymbiotic algae. Transactions of the American Microscopical Society, 84, 368–375.

    Article  Google Scholar 

  • Paps, J., Baguña, J., & Riutort, M. (2009). Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology & Evolution, 26, 2397–2406.

    Article  CAS  Google Scholar 

  • Pardos, F. (1988). Fine structure and function of pharynx cilia in Glossobalanus minutus Kowalevsky (Enteropneusta). Acta Zoologica (Stockholm), 69, 1–12.

    Article  Google Scholar 

  • Pasquinelli, A. E., McCoy, A., Jiménez, E., Saló, E., Ruvkun, G., Martindale, M. Q., & Baguña, J. (2003). Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evolution & Development, 5, 372–378.

    Article  CAS  Google Scholar 

  • Pedersen, K. J. (1964). The cellular organization of Convoluta convoluta, an acoel turbellarian: a cytological, histochemical and fine structural study. Zeitschrift für Zellforschung, 64, 655–687.

    Article  CAS  Google Scholar 

  • Pedersen, K. J. (1965). Cytological and cytochemical observations on the mucous gland cells of an acoel Turbellarian, Convoluta convoluta. Annals of the NewYork Academy of Sciences, 118, 930–965.

    Article  CAS  Google Scholar 

  • Pedersen, K. J., & Pedersen, L. R. (1986). Fine structural observations on the extracellular matrix (ECM) of Xenoturbella bocki Westblad, 1949. Acta Zoologica (Stockholm), 67, 103–114.

    Article  Google Scholar 

  • Pedersen, K. J., & Pedersen, L. R. (1988). Ultrastructural observations on the epidermis of Xenoturbella bocki Westblad, 1949; with a discussion of epidermal cytoplasmic filament systems of invertebrates. Acta Zoologica (Stockholm), 69, 231–246.

    Article  Google Scholar 

  • Perea-Atienza, E., Botta, M., Salvenmoser, W., Gschwentner, R., Egger, B., Krisof, B., Martinez, P., & Achatz, J. G. (2013). Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha). Frontiers in Zoology, 10(64). 20 pp.

  • Perea-Atienza, E., Gavilán, B., Chiodin, M., Abril, J. F., Hoff, K. J., Poustka, A. J., & Martinez, P. (2015). The nervous system of Xenacoelomorpha: a genomic perspective. Journal of Experimental Biology, 218, 618–628.

    Article  PubMed  Google Scholar 

  • Perseke, M., Hankeln, T., Weich, B., Fritzsch, G., Stadler, P. F., Israelsson, O., Bernhard, D., & Schlegel, M. (2007). The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory in Biosciences, 126, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Petrov, A.A. (2007a). Ultrastructural and histochemical features of the reproductive system in acoel turbellarians (Acoela) and their phylogenetic significance. Extended abstracts of candidates of science (biology) dissertation, St. Petersburg, 2007, 212 pp. Online at: http://www.dissercat.com/content/tkanevaya-i-kletochnaya-organizatsiya-beskishechnykh-turbellyarii-acoela-v-svete-filogenetic.

  • Petrov, A. A. (2007b). Morphological diversity and pathways of formation of sclerotized structures in acoelomorph turbellarians (Acoela, Acoelomorpha). Uchenye Zapiski Kazanskogo Universiteta, Seriya Estestvennye Nauki, 149, 138–142.

    Google Scholar 

  • Petrov, A. A., Hooge, M., & Tyler, S. (2004). Ultrastructure of sperms in Acoela (Acoelomorpha) and its concordance with molecular systematics. Invertebrate Biology, 123, 183–197.

    Article  Google Scholar 

  • Petrov, A. A., Hooge, M., & Tyler, S. (2006). Comparative morphology of the bursal nozzles in acoels (Acoela, Acoelomorpha). Journal of Morphology, 267, 634–648.

    Article  PubMed  Google Scholar 

  • Pfistermüller, R., & Tyler, S. (2002). Correlation of fluorescence and electron microscopy of F-actin-containing sensory cells in the epidermis of Convoluta pulchra (Platyhelminthes: Acoela). Acta Zoologica (Stockholm), 83, 15–24.

    Article  Google Scholar 

  • Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., & Baguña, J. (2007). Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE, 2(8), e717. 5 pp.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., Wallberg, A., Peterson, K. J., & Telford, M. J. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature (London), 470, 198–203.

    Article  CAS  Google Scholar 

  • Popova, N. V., & Mamkaev, Y. V. (1986). Ultrastructure and primitive features of the eyes of Convoluta convoluta (Turbellaria, Acoela). Doklady of the Academy of Sciences of the U.S.S.R., 283, 557–560.

    Google Scholar 

  • Popova, N.V., & Mamkaev, Yu.V. (1987). On types of sensillae in the acoel turbellarians (in Russian, English Abstracts). In Yu.V. Mamkaev (Ed.), Morphology of Turbellarians, Pogonophores, and Ascidians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 167, 85–89, pls.14–15.

  • Raikova, O.I. (1987a). Ultrastructural organisation of the digestive system of the acoel turbellarian Actinoposthia beklemischevi Mamkaev (in Russian, English Abstract). In Yu.V. Mamkaev (Ed.), Morphology of Turbellarians, Pogonophorans, and Ascidians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 167, 72–78, pls. 1–5.

  • Raikova, O. I. (1987b). Ultrastructure of the digestive parenchyma of Actinoposthia beklemischevi (Turbellaria, Acoela). Doklady of the Academy of Sciences of the U.S.S.R., 293, 250–253.

    Google Scholar 

  • Raikova, O.I. (1989a). Ultrastructure of the nervous system and sensory receptors of acoel turbellarians (in Russian, English Abstract). In Yu.V. Mamkaev & B.I. Joffe (Eds.), Morphology of Turbellaria. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 195, 36–46, pls. 9–12.

  • Raikova, O. I. (1989b). Homology between root filaments of the ciliary apparatus of Acoela and other Turbellaria. Doklady of the Academy of Sciences of the U.S.S.R. Biological Sciences, 308, 682–685.

    Google Scholar 

  • Raikova, O. I. (1991). Fine structural organisation in the nervous system and ciliary receptors in acoelous turbellarians. In D. A. Sakharov & W. Winlow (Eds.), Simpler nervous systems (pp. 37–51). Manchester: Manchester University Press.

    Google Scholar 

  • Raikova, O. I. (1992). Comparative investigations of the epidermis of Turbellaria Acoela: I. General features of the epidermis (in Russian, English abstract). Tsitologiya, 34, 43–49. pls. 1-4.

    Google Scholar 

  • Raikova, O. I. (2002). Immunocytochemical analysis of Acoela sperms as an approach to understanding the phylogenetic position of this group. Doklady of the Academy of Sciences of the U.S.S.R. Biological Sciences, 382, 48–50.

    CAS  Google Scholar 

  • Raikova, O. I. (2008). Neurophylogeny of early bilaterians: Acoela, Nemertodermatida, Xenoturbella. Abstracts of the ICIM-1. Journal of Morphology, 269, 1459–1460.

    Google Scholar 

  • Raikova, O. I., & Justine, J.-L. (1994). Ultrastructure of spermiogenesis and spermatozoa in 3 acoels (Platyhelminthes). Annals des Sciences Naturelles, Zoologie et Biologie Animale, 15, 63–72.

    Google Scholar 

  • Raikova, O. I., & Justine, J.-L. (1999). Microtubular system during spermiogenesis and in the spermatozoon of Convoluta saliens (Platyhelminthes, Acoela): tubulin immunocytochemistry and electron microscopy. Molecular Reproduction & Development, 52, 74–85.

    Article  CAS  Google Scholar 

  • Raikova, O. I., Falleni, A., & Gremigni, V. (1995). Oogenesis in Actinoposthia beklemischevi (Platyhelminthes, Acoela): an ultrastructural and cytochemical study. Tissue & Cell, 27, 621–633.

    Article  CAS  Google Scholar 

  • Raikova, O. I., Falleni, A., & Justine, J.-L. (1997). Spermiogenesis in Paratomella rubra (Platyhelminthes, Acoela): ultrastructural, immunocytochemical, cytochemical studies and phylogenetic implications. Acta Zoologica (Stockholm), 78, 295–307.

    Article  Google Scholar 

  • Raikova, O. I., Flyatchinskaya, L. P., & Justine, J.-L. (1998a). Acoel spermatozoa: ultrastructure and immunocytochemistry of tubulin. Hydrobiologia, 383, 207–214.

    Article  Google Scholar 

  • Raikova, O. I., Reuter, M., Kotikova, E. A., & Gustafsson, M. K. S. (1998b). A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes). Zoomorphology, 118, 69–77.

    Article  Google Scholar 

  • Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000a). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120, 107–118.

    Article  Google Scholar 

  • Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000b). The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue & Cell, 32, 358–365.

    Article  CAS  Google Scholar 

  • Raikova, O.I., Reuter, M., & Justine, J.-L. (2001). Contributions to the phylogeny and systematics of the Acoelomorpha. In D.T.J. Littlewood & R.A. Bray (Eds.), Interrelationships of the Platyhelminthes. Systematic Association Special Volume Series, 60, 13–23. London, Francis & Taylor.

  • Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., & Jondelius, U. (2004a). Evolution of the nervous system in Paraphanostoma (Acoela). Zoologica Scripta, 33, 71–88.

    Article  Google Scholar 

  • Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., & Jondelius, U. (2004b). Basiepithelial nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology, 107, 75–86.

    Article  PubMed  Google Scholar 

  • Raikova, O. I., Tekle, Y. I., Reuter, M., Gustafsson, M. K. S., & Jondelius, U. (2006). Copulatory organ musculature in Childia (Acoela) as revealed by phalloidin fluorescence and confocal microscopy. Tissue & Cell, 38, 219–232.

    Article  CAS  Google Scholar 

  • Ramachandra, N. B., Gates, R. D., Ladurner, P., Jacobs, D. K., & Hartenstein, V. (2002). Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Development, Genes & Evolution, 212, 55–60.

    Article  CAS  Google Scholar 

  • Reisinger, E. (1960). Was it Xenoturbella? Zeitschrift für wissenschaftliche Zoologie, 164, 188–198.

    Google Scholar 

  • Reuter, M., & Kreshchenko, N. (2004). Flatworm asexual multiplication implicates stem cells and regeneration. Canadian Journal of Zoology, 82, 334–356.

    Article  Google Scholar 

  • Reuter, M., Raikova, O. I., & Gustafsson, M. K. S. (1998). An endocrine brain? The pattern of FMRF-amide immunoreactivity in Acoela (Platyhelminthes). Tissue & Cell, 30, 57–63.

    Article  CAS  Google Scholar 

  • Reuter, M., Raikova, O. I., & Gustafsson, M. K. S. (2001a). Patterns in the nervous and muscle systems in lower flatworms. In E. Saló, N.A. Watson & E. Schockaert (Eds.). Biology of the Turbellaria, Belgian Journal of Zoology, 131(Suppl 1), 47–53.

    Google Scholar 

  • Reuter, M., Raikova, O. I., Jondelius, U., Gustafsson, M. K. S., Maule, A. G., & Halton, D. W. (2001b). Organisation of the nervous system in the Acoela: an immunocytochemical study. Tissue & Cell, 33, 119–128.

    Article  CAS  Google Scholar 

  • Rieger, R. M. (1976). Monociliated epidermal cells in Gastrotricha: significance for concepts of early metazoan evolution. Zeitschrift für zoologische Systematik und Evolutionsforschung, 14, 198–226.

    Article  Google Scholar 

  • Rieger, R. M. (1981). Morphology of the Turbellaria at the ultrastructural level. Hydrobiologia, 84, 213–229.

    Article  Google Scholar 

  • Rieger, R. M. (1984). Evolution of the cuticle in the lower Eumetazoa. In J. Bereiter-Hahn, A. G. Matoltsy, & K. S. Richards (Eds.), Biology of the integument, vol I. Invertebrates (pp. 389–399). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Rieger, R. M. (1985). The phylogenetic status of the acoelomate organization within the Bilateria: a histological perspective. In S. Conway Morris, J. D. George, R. Gibson, & H. M. Platt (Eds.), The origins and relationships of lower invertebrates (pp. 101–122). Oxford: Oxford University Press.

    Google Scholar 

  • Rieger, R. M. (1986a). Über dem Ursprung der Bilateria: Die Bedeutung der Ultrastrukturforschung für ein neues Verstehen der Metazoenevolution. Verhandlungen der Deutschen Zoologischen Gesellschaft, 79, 31–50.

    Google Scholar 

  • Rieger, R. M. (1986b). Asexual reproduction and the turbellarian archetype. Hydrobiologia, 132, 35–45.

    Article  Google Scholar 

  • Rieger, R.M. (1994a). Evolution of the “lower” Metazoa. In S. Bengtson (Ed.): Early Life on Earth, Nobel Symposium No. 84, 475–488. New York, Columbia University Press.

  • Rieger, R. M. (1994b). The biphasic life cycle—a central theme of metazoan evolution. American Zoologist, 34, 484–491.

    Article  Google Scholar 

  • Rieger, R. M., & Lombardi, J. (1987). Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology, 107, 191–208.

    Article  Google Scholar 

  • Rieger, R. M., & Ladurner, P. (2001). Searching for the stem species of the Bilateria. In E. Saló, N.A. Watson / E. Schockaert (Eds.), Biology of the Turbellaria, Barcelona 2000. Belgian Journal of Zoology, 131(Suppl 1), 27–34.

    Google Scholar 

  • Rieger, R. M., & Ladurner, P. (2003). The significance of muscle cells for the origin of mesoderm in Bilateria. Integrative and Comparative Biology, 43, 47–54.

    Article  PubMed  Google Scholar 

  • Rieger, R. M., Powell, E. N., Tyler, S., & Rieger, G. E. (1990). Mitochondrial ultrastructure of thiobiotic meiofauna. Cyclobios Newsletter (Innsbruck), 4, 29–32.

    Google Scholar 

  • Rieger, R.M., Tyler, S., Smith, J.P.S. III., & Rieger, G.E. (1991). Platyhelminthes: Turbellaria. In F.W. Harrsion, & B.J. Bogitsch (Eds,), Microscopic anatomy of invertebrates. Vol. 3: Platyhelminthes and Nemertinea. New York, John Wiley & Sons, pp. 7–140.

  • Rieger, R. M., Ladurner, P., & Hobmayer, B. (2004). A clue to the origin of the Bilateria. Science, 307, 353–354.

    Article  Google Scholar 

  • Rohde, K., Watson, N. A., & Cannon, L. R. G. (1988a). Ultrastructure of spermiogenesis in Amphiscolops (Acoela, Convolutidae) and of sperm in Pseudoactinoposthia (Acoela, Childiidae). Journal of Submicroscopical Cytology & Pathology, 20, 595–604.

    Google Scholar 

  • Rohde, K., Watson, N. A., & Cannon, L. R. G. (1988b). Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela); implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. Journal of Submicroscopical Cytology & Pathology, 20, 759–767.

    Google Scholar 

  • Rouse, G. W., Wilson, N. G., & Vrijenhoek, R. C. (2013). First Xenoturbella spp. (Xenoturbellida) from the Pacific. SICB Annual Meeting Abstracts, e185, 136.5.

    Google Scholar 

  • Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., & Baguña, J. (1999). Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283, 1919–1923.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Baguña, J., & Riutort, M. (2002). A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the USA, 99, 11246–11251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Trillo, I., Riutort, M., Fourcade, M., Baguña, J., & Boore, J. L. (2004). Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Molecular Phylogenetics & Evolution, 33, 321–332.

    Article  CAS  Google Scholar 

  • Ryan, J. F., Borve, A., & Hejnol, A. (2013). Are acoelomorphs deuterostomes? Evidence from the genome of the nemertodermatid Meara stichopi (Acoelomorpha). SICB Annual Meeting Abstracts, 2013(e364), P1.172.

    Google Scholar 

  • Sarfatti, G., & Bedini, C. (1965). The symbiont alga of the flatworm Convoluta psammophila Bekl. observed with the electron microscope. Caryologia, 18, 207–223.

    Article  Google Scholar 

  • Schierwater, B., & DeSalle, R. (2007). Can we ever identify the Urmetazoan? Integrative & Comparative Biology, 47, 670–676.

    Article  Google Scholar 

  • Schierwater, B., Kolokotronis, S. O., Eitel, M., & DeSalle, R. (2009). The diploblast-Bilateria sister hypothesis: parallel evolution of a nervous systems may have been a simple step. Communicative & Integrative Biology, 2, 403–405.

    Article  Google Scholar 

  • Schrödinger, E. (1944). What is Life? The physical aspect of the living cell. Based on lectures delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, in February 1943. Cambridge, Cambridge University Press.

  • Seaver, E. C. (2003). Segmentation: mono- or polyphyletic? International Journal of Developmental Biology, 47, 583–596.

    PubMed  Google Scholar 

  • Semmler, H. (2009). Comparative neuromuscular development in the flatworm-like phyla Acoela and Platyhelminthes. PhD-thesis University of Copenhagen, 143 pp.

  • Semmler, H., Bailly, X., & Wanninger, A. (2008). Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Frontiers in Zoology, 5(14). 15 pp.

  • Semmler, H., Chiodin, M., Bailly, X., Martinez, P., & Wanninger, A. (2010). Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel Symsagittifera roscoffensis. Development, Growth & Differentiation, 52, 701–713.

    Article  CAS  Google Scholar 

  • Sempere, L. F., Cole, C. N., McPeek, M. A., & Peterson, K. J. (2006). The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. Journal of Experimental Zoology, Series B: Molecules, Development & Evolution, 306, 575–588.

    Article  CAS  Google Scholar 

  • Sempere, L. F., Martinez, P., Cole, C., Baguña, J., & Peterson, K. J. (2007). Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evolution & Development, 9, 409–415.

    Article  CAS  Google Scholar 

  • Sikes, J.M. (2009). Breaking the A-P axis: evolution of diverse asexual reproduction strategies in Convolutriloba acoels. Dissertation, University of Maryland, College Park. 122 pp. < http://gradworks.umi.com/3372987.pdf>.

  • Sikes, J. M., & Bely, A. E. (2008). Radical modification of the A–P axis and the evolution of asexual reproduction in Convolutriloba acoels. Evolution & Development, 10, 619–631.

    Article  CAS  Google Scholar 

  • Sikes, J. M., & Bely, A. E. (2010). Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. Developmental Biology, 338, 86–97.

    Article  CAS  PubMed  Google Scholar 

  • Silveira, M. (1967). Formation of structured secretory granules within the Golgi complex in an acoel turbellarian. Journal de Microscopie (Paris), 6, 95–100.

    Google Scholar 

  • Smith, J. P. S., III. (1981). Fine structural observations on the central parenchyma in Convoluta sp. [Isodiametra pulchra] Hydrobiologia. 84, 259–265.

  • Smith, J.P.S. III. (1990). Ultrastructure of the ciliary rootlet system in Acoelomorpha: phylogenetic significance. American Zoologist, 30(4), 46A (257) (Abstract).

  • Smith, J. P. S. III., & Tyler, S. (1985a). Fine-structure and evolutionary implications of the frontal organ in Turbellaria Acoela: 1. Diopisthoporus gymnopharyngeus sp.n. Zoologica Scripta, 14, 91–102.

  • Smith, J.P.S. III., & Tyler, S. (1985b). The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In S. Conway Morris, J.D. George, R. Gibson, H.M. Platt (Eds.), The Origins and relationships of lower invertebrates. Systematic Association Special Volumes Series, 28, 123–142. Oxford, Oxford Univ Press.

  • Smith, J. P. S. III., & Tyler, S. (1986). Frontal organs in the Acoelomorpha (Turbellaria): ultrastructure and phylogenetic significance. Hydrobiologia, 132, 71–78.

  • Smith, J.P.S. III., & Tyler, S. (1988). Frontal organs in the Nemertodermatida (Turbellaria). American Zoologist, 28(4), 140A, #747.

  • Smith, J. P. S. III., Tyler, S., Thomas, M. B., & Rieger, R. M. (1982). The morphology of turbellarian rhabdites: phylogenetic implications. Transactions of the American Microscopical Society, 101, 209–228.

  • Smith, J. P. S. III., Tyler, S., & Rieger, R. M. (1986). Is the Turbellaria polyphyletic? Hydrobiologia, 132, 13–21.

  • Smith, J.P.S. III., Thomas, M.B., Chandler, R., Zane, S.F. (1988). Granular inclusions in the oocytes of Convoluta sp., Nemertoderma sp., and Nemertinoides elongatus (Turbellaria, Acoelomorpha). In P. Ax (Ed.), Free-living and symbiotic Plathelminthes. Proceedings of the 5th International Symposium: Biology of “Turbellarians”. Fortschritte der Zoologie, 36, 263–269.

  • Smith, J. P. S. III., Egger, B., Tyler, S., Ladurner, P., Achatz, J., & Merlie, S. (2009). Neoblasts in Nemertodermatida. Abstracts of SICB Annual Meeting, Boston, 61, 5.

  • Sorimachi, K., Okayasu, T., Ebara, Y., Furuta, E., & Ohhira, S. (2014). Phylogenetic position of Xenoturbella bocki and hemichordates Balanoglossus carnosus and Saccoglossus kowalevskii based on amino acid composition or nucleotide content of complete mitochondrial genomes. International Journal of Biology, 6, 82–94.

    Google Scholar 

  • Sprecher, S., & Reichert, H. (2003). The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod Structure & Development, 32, 141–156.

    Article  Google Scholar 

  • Squires, L. N., Rubakhin, S. S., Wadhams, A. A., Talbot, K. N., Nakano, H., Moroz, L. L., & Sweedler, J. V. (2010). Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki. Journal of Experimental Biology, 213, 2647–2654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, M., Mazza-Curil, K. L., van Wolfswinkel, J. C., & Reddien, P. W. (2014). Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Current Biology, 24, 1107–1113. plus Supplements (40 pp.).

    Article  CAS  PubMed  Google Scholar 

  • Stach, T., Dupont, S., Israelsson, O., Fauville, G., Nakano, H., Kanneby, T., & Thorndyke, M. (2005). Nerve cells of Xenoturbella bocki (phylum uncertain) and Harrimania kupfferi (Enteropneusta) are positively immunoreactive to antibodies raised against echinoderm neuropeptides. Journal of the Marine Biological Association of the UK, 85, 1519–1524.

    Article  CAS  Google Scholar 

  • Sterrer, W. (1998). New and known Nemertodermatida (Platyhelminthes-Acoelomorpha)—a revision. Belgian Journal of Zoology, 128, 55–92.

    Google Scholar 

  • Stoecker, D. K., Swanberg, N., & Tyler, S. (1989). Oceanic mixotrophic flatworms. Marine Ecology Progress Series, 58, 41–51.

    Article  Google Scholar 

  • Stricker, S. A., Welford, A. M., & Morris, C. A. (1992). Somatic cell-oocyte interactions during oogenesis in the acoel flatworm Childia groenlandica. Invertebrate Reproduction & Development, 21, 57–77.

    Article  Google Scholar 

  • Svensson, M. E. (2004). Homology and homocracy revisited: gene expression patterns and hypotheses of homology. Development, Genes & Evolution, 214, 418–421.

    Article  CAS  Google Scholar 

  • Taylor, D. L. (1971). On the symbiosis between Amphididinum klebsii (Dinophyceae) and Amphiscolops langerhansi (Turbellaria: Acoela). Journal of the Marine Biological Association of the UK, 51, 301–313. 5 pls.

    Article  Google Scholar 

  • Tekle, Y. I., Raikova, O. I., Ahmadzadeh, A., & Jondelius, U. (2004). Revision of the Childiidae (Acoela), a total evidence approach in reconstructing the phylogeny of acoels with reversed muscle layers. Journal of Zoological Systematics and Evolutionary Research, 43, 72–90.

    Article  Google Scholar 

  • Tekle, Y. I., Raikova, O. I., & Jondelius, U. (2006). A new viviparous acoel Childia vivipara sp. nov. with observations on the developing embryos, sperm ultrastructure, body wall and stylet musculatures. Acta Zoologica (Stockholm), 87, 121–130.

    Article  Google Scholar 

  • Tekle, Y. I., Raikova, O. I., Justine, J.-L., Hendelberg, J., & Jondelius, U. (2007a). Ultrastructural and immunocytochemical investigation of acoel sperms with 9+1 axoneme structure: new sperm characters for unraveling phylogeny in Acoela. Zoomorphology, 126, 1–16.

    Article  Google Scholar 

  • Tekle, Y. I., Raikova, O. I., Justine, J.-L., & Jondelius, U. (2007b). Ultrastructure and tubulin immunocytochemistry of the copulatory stylet-like structure in Childia species (Acoela). Journal of Morphology, 268, 166–180.

    Article  PubMed  Google Scholar 

  • Telford, M. J. (2008). Xenoturbellida: the fourth deuterostome phylum and the diet of worms. In: B.J. Swalla, & J. Xavier-Neto J (Eds.), Chordate origins and evolution. Genesis, 46, 580–586.

    Article  PubMed  Google Scholar 

  • Telford, M. J., Lockyer, A. E., Cartwright-Finch, C., & Littlewood, D. T. J. (2003). Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London, B, 270, 1077–1083.

    Article  CAS  Google Scholar 

  • Thomas, M. B., Smith, J. P. S., Chandler, R., & Barker, A. (1985). Egg-shell granules in some primitive Turbellaria: More evidence for polyphyly? American Zoology, 25, 91A (472).

    Google Scholar 

  • Todt, C. (2009). Structure and evolution of the pharynx simplex in acoel flatworms (Acoela). Journal of Morphology, 270, 271–290.

    Article  PubMed  Google Scholar 

  • Todt, C., & Tyler, S. (2006). Morphology and ultrastructure of the pharynx in Solenofilomorphidae (Acoela). Journal of Morphology, 267, 776–792.

    Article  PubMed  Google Scholar 

  • Todt, C., & Tyler, S. (2007). Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): a comparative ultrastructural study. Acta Zoologica (Stockholm), 88, 41–58.

    Article  Google Scholar 

  • Tyler, S. (1973). An adhesive function for modified cilia in an interstitial turbellarian. Acta Zoologica (Stockholm), 54, 139–151.

    Article  Google Scholar 

  • Tyler, S. (1976). Comparative ultrastructure of adhesive systems in the Turbellaria. Zoomorphologie, 84, 1–76.

    Article  Google Scholar 

  • Tyler, S. (1979). Distinctive features of cilia in metazoans and their significance for systematics. Tissue & Cell, 11, 385–400.

    Article  CAS  Google Scholar 

  • Tyler, S. (1984a). Ciliogenesis in embryos of the acoel turbellarian Archaphanostoma. Transactions of the American Microscopical Society, 103, 1–15.

    Article  Google Scholar 

  • Tyler, S. (1984b). Turbellarian platyhelminths. In J. Bereiter-Hahn, A. G. Matoltsy, & K. S. Richards (Eds.), Biology of the integument, vol I. Invertebrates (pp. 112–131). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Tyler, S. (1986). Ultrastructure of a remarkable food-gathering organ in Flagellophora sp. (Turbellaria, Nemertodermatida). Transactions of the American Microscopical Society, 105, 90.

    Google Scholar 

  • Tyler, S. (2001). The early worm—origins and relationships of the lower flatworms. In: D.T.J. Littlewood & R.A. Bray (Eds.), Interrelationships of the Platyhelminthes. Systematic Association Special Volumes Series, 60, 3–12. London, Taylor & Francis.

  • Tyler, S., & Rieger, R. M. (1975). Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. Science, 188, 730–732.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, S., & Rieger, R. M. (1977). Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). In T.G. Karling, & M. Meinander (Eds.), The Alexander Luther Centennial Symposium on Turbellaria. Acta Zoologica Fennica, 154, 193–207.

    Google Scholar 

  • Tyler, S., & Hyra, G. S. (1994). Fluorescence and electron microscopy of body-wall locomotory elements in acoelomate worms. Transactions of the American Microscopical Society, 113, 420.

    Google Scholar 

  • Tyler, S., & Hyra, G. S. (1998). Patterns of musculature as taxonomic characters for the Turbellaria Acoela. Hydrobiologia, 383, 51–59.

    Article  Google Scholar 

  • Tyler, S., & Rieger, R. M. (1999). Functional morphology of musculature in the acoelomate worm, Convoluta pulchra (Plathelminthes). Zoomorphology, 119, 127–141.

    Article  Google Scholar 

  • Tyler, S., & Hooge, M. D. (2004). Comparative morphology of the body wall in flatworms (Platyhelminthes). Canadian Journal of Zoology, 82, 194–210.

    Article  Google Scholar 

  • Tyler, S., & Schilling, S. (2011). Phylum Xenacoelomorpha Philippe, et al., 2011. In: Z.-Q. Zhang (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 24–25.

    Google Scholar 

  • Tyler, S., Grimm, J. K., & Smith, J. P. S., III. (1989). Dynamics of epidermal wound repair in acoel turbellarians—the role of pulsatile bodies. American Zoologist, 29(4), 115A.

    Google Scholar 

  • von Salvini-Plawen, L. (1978). On the origin and evolution of the lower Metazoa. Zeitschrift für zoologische Systematik und Evolutionsforschung, 16, 40–88.

    Article  Google Scholar 

  • von Salvini-Plawen, L. (2008). Photoreception and the polyphyletic evolution of photoreceptors (with special reference to Mollusca). American Malacological Bulletin, 26, 83–100.

    Article  Google Scholar 

  • von Salvini-Plawen, L., & Mayr, E. (1977). On the evolution of photoreceptors and eyes. Evolutionar Biology, 10, 207–263.

    Google Scholar 

  • Wallberg, A. (2009). The dawn of a new age. Interrelationships of Acoela and Nemertodermatida and the early evolution of Bilateria. Acta Universitatis Uppsalensis, Digital Comprehensive Summaries of Uppsala Dissertation from the Faculy of Science and Technology, 667, 44 pp.

  • Wallberg, A., Curini-Galletti, M., Ahmadzadeh, A., & Jondelius, U. (2007). Dismissal of Acoelomorpha: acoela and Nemertodermatida are separate early bilaterian clades. Zoologica Scripta, 36, 509–523.

    Article  Google Scholar 

  • Westblad, E. (1949). Xenoturbella bocki n.g., n.sp., a peculiar, primitive turbellarian type. Arkiv för Zoologi (serie 2), 1, 11–29. pls. 1–4.

    Google Scholar 

  • Westheide, W. (1987). Progenesis as a principle in meiofauna evolution. Journal of Natural History, 21, 843–854.

    Article  Google Scholar 

  • Witek, A. (2009). Phylogenomische Analysen bei Metazoen - Zur Stellung der Xenoturbellida und Syndermata. PhD Thesis University of Mainz, 121 pp.

  • Yamasu, T. (1991). Fine structure and function of ocelli and sagittocysts of acoel flatworms. In S. Tyler (Ed.), Turbellarian biology. Hydrobiologia, 227, 273–282.

    Article  Google Scholar 

  • Zabotin, Y. I., & Golubev, A. I. (2009). Ultrastructure of spermatozoa in the acoel turbellarian Archaphanostoma agile (Acoela). Uchenye Zapiski Kazanskogo Universiteta, Seriya Estestvennye Nauki, 151, 84–94.

    Google Scholar 

  • Zabotin, Y. I., & Golubev, A. I. (2011). Ultrastructure of spermatozoa in four species of acoel turbellarians (Acoela) and its significance for systematics. Zoologicheskii Zhurnal, 90, 3–12.

    Google Scholar 

  • Zabotin, Y. I., & Golubev, A. I. (2014). Ultrastructure of oocytes and female copulatory organs of Acoela. Biology Bulletin Nauk, 41, 722–735.

    Article  Google Scholar 

Download references

Acknowledgments

I thank two anonymous reviewers for their valuable comments on the draft of the typescript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Haszprunar.

Additional information

This article is part of the Special Issue The new animal phylogeny: The first 20 years

“I can see no other escape from this dilemma …. than that some of us should venture to embark on a synthesis of facts and theories, albeit with second-hand and incomplete knowledge of some of them - and at the risk of making fools of ourselves”.

Erwin Schrödinger (1944) in the preface of “What is Life”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haszprunar, G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). Org Divers Evol 16, 363–389 (2016). https://doi.org/10.1007/s13127-015-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0249-z

Keywords

Navigation