Skip to main content
Log in

New ideas on the origin of bilateral animals

  • Invertebrate Zoology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Comparative anatomy and embryology provide impressive evidence that the ventral side of all Bilateria (except Chordata) originates from the blastoporal surface, while the mouth and anus develop, respectively, from the anterior and posterior extremities of an elongated blastopore. From the point of view of paleontology, some Vendian multicellular animals represent transitional forms between Radiata and Bilateria. Vendian Bilateria are metameric organisms with a symmetrical or asymmetrical arrangement of segments; they can be considered as bilaterally symmetrical coelenterates crawling on the oral surface. In the recent Cnidaria, homologues of the genes “Brachyury,” “goosecoid” and “fork head” are expressed around the mouth. In the recent Bilateria these genes are expressed along the elongated blastopore and around the mouth and anus. These data corroborate the validity of the idea of amphistomy and the homology between the ventral surface in Bilateria and oral disk in coelenterates. It is supposed that the ancestors of Bilateria were crawling on the oral surface (=ventral side) and gave rise to both Fanerozoic Cnidaria and triploblastic Bilateria. This allows us to suggest the origin of Bilateria from Vendian bilaterally symmetrical coelenterates with numerous metameric pockets of the gastral cavity. Such ancestors gave rise to both Cnidaria and Bilateria. Apparently the primary Bilateria were complicated organisms having a coelom and segmentation, which allows us to explain the great diversity of highly organized organisms (arthropods, mollusks, and others) in the Cambrian era. An idea is proposed that Ctenophora are the only group of recent Eumetazoa that retain primary axial symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V.V. Aleshin N.B. Petrov (2002) ArticleTitleMolecular evidences of regress in the evolution of multicellular animals Zhurn. Obshch. Biol. 63 195–208

    Google Scholar 

  2. V.N. Beklemishev (1944) Osnovy sravnitel’noi anatomii bespozvonochnykh Sovetskaya Nauka Moscow

    Google Scholar 

  3. V.N. Beklemishev (1964) Promorphology Osnovy sravnitel’noi anatomii bespozvonochnykh Nauka Moscow

    Google Scholar 

  4. N.S. Vladychenskaya O.S. Kedrova I.A. Milyutina et al. (1995) ArticleTitlePosition of the Phylum Placozoa in the System of Multicellular Animals According the Results of Comparisons of Sequences in the 18S rRNA Dokl. RAN 344 IssueID1 1–3

    Google Scholar 

  5. V.A. Dogel’ (1954) Oligomerizatsiya gomologichnykh organov kak odin iz glavnykh putei evolyutsii zhivotnykh Izdatel’stvo LGU Leningrad

    Google Scholar 

  6. A.V. Ivanov (1976) ArticleTitleRelationships Between Protostomia and Deuterostomia and the System of Animals Zool. Zhurn. 55 IssueID8 1125–1137

    Google Scholar 

  7. A.V. Ivanov Yu.V. Mamkaev (1973) Resnichnye chervi (Turbellaria), ikh proiskhozhdenie i evolyutsiya. Filogeneticheskie ocherki Nauka Leningrad

    Google Scholar 

  8. A.Yu. Ivantsov (2001) ArticleTitle Vendia and Other Pre-Cambrian “Arthropods” Paleontol. Zhurn. 4 3–10

    Google Scholar 

  9. A.Yu. Ivantsov Ya.E. Malakhovskaya (2002) ArticleTitleGiant Traces of Vendian Animals Dokl. RAN 385 IssueID3 328–386

    Google Scholar 

  10. Ivantsov, A.Yu. and Fedonkin, M.A., Traces of Independent Movement—The Conclusive Proof of Animal Nature of Ediacaran Animals, Evolyutsiya zhizni na Zemle (Evolution of Life on the Earth), Mater. II Internat. Symp., November 12–15, 2001, Tomsk, 2001, pp. 133–137.

  11. V.V. Malakhov (1977) ArticleTitleThe Problem of General Pattern in Different Groups of Deuterostomate Animals Zhurn. Obshch. Biol. 38 IssueID4 485–499

    Google Scholar 

  12. V.V. Malakhov E.N. Temereva (1999) ArticleTitleEmbryonic Development in the Phoronid Phoronis ijimai (Lophophorata, Phoronida): Two Sources of Coelomic Mesoderm Dokl. RAN 365 IssueID4 574–576

    Google Scholar 

  13. V.V. Malakhov E.N. Temereva (2000) ArticleTitleEmbryonic Development in the Phoronid Phoronis ijimai Biol. Morya 26 IssueID6 391–399

    Google Scholar 

  14. B.S. Sokolov (1997) Ocherki stanovleniya venda KMK Scientific Press Ltd. Moscow

    Google Scholar 

  15. Fedonkin, M.A., The White Sea Biota of the Vend (Pre-Cambrian Skeletonless Fauna of the North of the Russian Platform, Tr. Geol. In- ta AN SSSR, 1981, issue 342, pp. 3–100.

  16. M.A. Fedonkin (1983) ArticleTitleThe Organic World of the Vendian Itogi nauki i tekhniki 12 3–127

    Google Scholar 

  17. M.A. Fedonkin (1984) Promorphology of Vendian Radialia Stratigrafiya i paleontologiya drevneishego fanerozoya Nauka Moscow 30–57

    Google Scholar 

  18. M.A. Fedonkin (1985) Promorphology of Vendian Bilateria and the Problem of the Origin of Metamerism in Articulata Problematiki pozdnego dokembriya i paleozoya Nauka Moscow 79–91

    Google Scholar 

  19. M.A. Fedonkin (1987) Besskeletnaya fauna venda i ee mesto v evolyutsii Metazoa Nauka Moscow

    Google Scholar 

  20. M.A. Fedonkin (1997) Global Evens in the Proterozoic and the Formation of Proterozoic Biosphere (On the Current State on the Problem) Informatsionnye materialy o deyatel’nosti Nauchnogo soveta po problemam paleobiologii i evolyutsii organicheskogo mira za 1996 g. Izdatel’stvo Paleontologicheskogo Instituta RAN Moscow 39–53

    Google Scholar 

  21. Fedonkin, M.A., A Cold Down of the Animal Life, Priroda, 2000, no. 9, pp. 3–11.

  22. H.B. Adelman (1922) ArticleTitleThe Significance of the Prechordal Plate Amer. J. Anat. 31 55–101

    Google Scholar 

  23. S.L. Ang A. Wierda D. Wong et al. (1993) ArticleTitleThe Formation and Maintenance of the Definitive Endoderm Lineage in the Mouse: Involvement of HNF3/forkhead Proteins Development 119 1301–1315 Occurrence Handle1:CAS:528:DyaK2cXlslGqs7o%3D Occurrence Handle8306889

    CAS  PubMed  Google Scholar 

  24. D. Arendt K. Nubler-Jung (1997) ArticleTitleDorsal or Ventral: Similarities in the Fate Maps and Gastrulation Patterns in Annelids, Arthropods and Chordates Mech. Dev. 61 7–21

    Google Scholar 

  25. M. Artinger I. Blitz K. Inoue et al. (1997) ArticleTitleInteraction of Goosecoid and Brachyury in Xenopus Mesoderm Patterning Mech. Dev. 65 187–196

    Google Scholar 

  26. S. Bassham J. Postlethwait (2000) ArticleTitleBrachyury (T) Expression in Embryos of a Larvacean urochordate, Oikopleura dioica, and the Ancestral Role of T Dev. Biol. 220 322–332

    Google Scholar 

  27. Beklemischev, V., On the Relationship of the Turbellaria to the Other Groups of the Animal Kingdom, The Lower Metazoa, Univ. of Calif. Press, 1963, pp. 324–344.

  28. E. Beneden Particlevan (1891) ArticleTitleRecherches sur le development des Arachnactis. Contribution a la morphologie de Cerianthides Arch. Biol. (Paris) 11 114–146

    Google Scholar 

  29. J.A. Biggelaar Particlevan den (1977) ArticleTitleDevelopment of Dorsoventral Polarity and Mesentoblast Determination in Patella vulgata J. Morphol. 154 157–186

    Google Scholar 

  30. B.C. Boyer J.J. Henry M.Q. Martindale (1998) ArticleTitleThe Cell Lineage of a Polyclad Turbellarian Embryo Reveals Close Similarity to Coelomic Spiralians Dev. Biol 204 111–123

    Google Scholar 

  31. E. Bresslau E. Reisinger (1933) ArticleTitlePlathelminthes. Allgemeine Einleitung zur Naturgeschichte der Plathelminthes Handb. Zool. 2 IssueID1 34–51

    Google Scholar 

  32. M. Broun H.R. Bode (2002) ArticleTitleCharacterization of the Head Organizer in Hydra Development 129 875–884

    Google Scholar 

  33. M. Broun S. Sokol H.R. Bode (1999) ArticleTitle Cngsc, a Homologue of goosecoid, Participates in the Patterning of the Head, and Is Expressed in the Organizer Region of Hydra Development 126 5245–5254

    Google Scholar 

  34. B. Christen J.M. Slack (1999) ArticleTitleSpatial Response to Fibroblast Growth Factor Signaling in Xenopus Embryos Development 126 119–125

    Google Scholar 

  35. R. Codreanu (1970) ArticleTitleGrands problemes controverses de l’evolution phylogenetique des Metazoaires Ann. Biol. (Paris) 9 671–709

    Google Scholar 

  36. A.G. Collins (1998) ArticleTitleEvaluating Multiple Alternative Hypotheses for the Origin of Bilateria: An Analysis of 18S rRNA Molecular Evidence Proc. Natl. Acad. Sci. USA. 95 15458–15463

    Google Scholar 

  37. A.G. Collins J.W. Valentine (2001) ArticleTitleDefining Phyla: Evolutionary Pathways to Metazoan Body Plans Evol. Dev. 3 432–442

    Google Scholar 

  38. J. Croce G. Lhomond C. Gache (2001) ArticleTitleExpression Pattern of Brachyury in the Development of the Sea Urchin Paracentrotus lividus Dev. Genes Evol. 211 617–619

    Google Scholar 

  39. R.A. Dewel (2000) ArticleTitleColonial Origin for Eumetazoa: Major Morphological Transitions and the Origin of Bilaterian Complexity J. Morph. 243 35–74

    Google Scholar 

  40. Dewel, R.A. and Budd, G.E., Origin of Coelomate Bilaterians From a Diploblastic Colonial “Cnidarians”: Implications for Interpretation of the Ediacaran Fauna and the Early History of Metazoans, Geol. Soc. Ann. Meet., 1998, vol. 30, p. A232.

  41. J. Dzik A.Y. Ivantsov (1999) ArticleTitleAn Asymmetric Segmented Organism From the Vendian of Russia and the Status of the Dipleurozoa Hist. Biol. 13 255–268

    Google Scholar 

  42. J. Dzik A.Y. Ivantsov (2002) ArticleTitleInternal Anatomy of a New Precambrian Dickinsoniid Dipleurozoan from Northern Russia N. Jb. Geol. Paleont. Mh. 7 385–396

    Google Scholar 

  43. Fedonkin, M.A., Cold Water Cradle of Animal Life, Ecosystem Evolution, Abstr. Int. Symp. Moscow. Sept. 26–30, 1995, Moscow, 1995, pp. 123–124.

  44. M.A. Fedonkin (1998) ArticleTitleMetameric Features in the Vendian Metazoans Ital. J. Zool. 68 11–17

    Google Scholar 

  45. M.A. Fedonkin B.M. Waggoner (1997) ArticleTitleThe Late Precambrian Fossil Kimberella is a Mollusc-Like Bilaterian Organism Nature 338 868–871

    Google Scholar 

  46. S. Filosa J.A. Rivera-Perez A.P. Gomez et al. (1997) ArticleTitleGoosecoid and HNF-3beta Genetically Interact to Regulate Neural Tubepatterning During Mouse Embryogenesis Development 124 2843–2854 Occurrence Handle1:CAS:528:DyaK2sXkvFCisrw%3D Occurrence Handle9226455

    CAS  PubMed  Google Scholar 

  47. J.R. Finnerty M.Q. Martindale (1997) ArticleTitleHomeoboxes in Sea Anemones (Cnidaria: Anthozoa): A PCR-based Survey of Nematostella vectensis and Metridium senile Biol. Bull. 193 62–76

    Google Scholar 

  48. J.R. Finnerty D. Paulson P. Burton M.Q. Martindale (2003) ArticleTitleEarly Evolution of a Homeobox Gene: The Parahox Gene Gsx in the Cnidaria and Bilateria Evol. Dev. 5 331–345

    Google Scholar 

  49. G. Freeman M.Q. Martindale (2002) ArticleTitleThe Origin of Mesoderm in Phoronids Dev. Biol. 252 301–311

    Google Scholar 

  50. Graff, L., von., Die Organisation der Turbellaria Acoela, Leipzig, 1891.

  51. K.M. Halanych Y. Passamaneck (2001) ArticleTitleA Brief Review of Metazoan Phylogeny and Future Prospects in HoxResearch Amer. Zool. 41 629–639

    Google Scholar 

  52. J.J. Henry M.Q. Martindale (1998) ArticleTitleConservation of the Spiralian Development Program: Cell Lineage of the Nemertean Cerebratulus lacteus, Dev. Biol. 201 253–269

    Google Scholar 

  53. Hyman, L.H., The Invertebrates, vol. 2: Plathyhelminthes and Rhynchocoela. The Acoelomate Bilateria, New York; Toronto, 1951.

  54. G. Jagersten (1955) ArticleTitleOn the Early Phylogeny of the Metazoa. The Bilaterogastraea-Theory Zool. Bidr. Uppsala 30 321–354

    Google Scholar 

  55. G. Jagersten (1959) ArticleTitleFurther Remarks on the Early Phylogeny of the Metazoa Zool. Bidr. Uppsala 33 79–108

    Google Scholar 

  56. C. Kiecker C. Niehrs (2001) ArticleTitleThe Role of Prechordal Mesoderm in Neural Patterning Curr. Opin. Neurobiol. 11 27–33

    Google Scholar 

  57. J. Kim W. Kim C.M. Cunningham (1999) ArticleTitleA New Perspective on Lower Metazoan Relationships from 18S rDNA Sequences Mol. Biol. Evol. 16 423–447

    Google Scholar 

  58. T. Kusch R. Reuter (1999) ArticleTitleFunctions for Drosophila brachyenteron and fork head in Mesoderm Specification and Cell Signaling Development 126 3991–4003 Occurrence Handle1:CAS:528:DyaK1MXmsleqsLk%3D Occurrence Handle10457009

    CAS  PubMed  Google Scholar 

  59. T.C. Lacalli (1996) ArticleTitleDorsoventral Axis Inversion: A Phylogenetic Perspective BioEssays 18 251–254

    Google Scholar 

  60. A. Lameere (1932) Precis de zoologie Desoer Liege

    Google Scholar 

  61. Lang, A., Die Polycladen (Seeplanarien) Fauna und Flora des Golfes von Neapel, 1884, no. 11, pp. 1–688.

  62. N. Lartillot M. Gour ParticleLe A. Adoutte (2002) ArticleTitleExpression Patterns of fork head and goosecoid Homologues in the Mollusk Patella vulgata Supports the Ancestry of the Anterior Mesentoderm Across Bilateria Dev. Gen. Evol. 212 551–561

    Google Scholar 

  63. B.V. Latinkic J.C. Smith (1999) ArticleTitle Goosecoid and Mix.1 Repress Brachyury Expression and Are Required for Head Formation in Xenopus Development 126 1769–1779

    Google Scholar 

  64. F.R. Lillie (1895) ArticleTitleThe Embryology of the Unionidae J. Morphol. 10 1–100

    Google Scholar 

  65. E. Marcus (1958) ArticleTitleOn the Evolution of the Animal Phyla Quart. Rev. Biol. 33 24–58

    Google Scholar 

  66. D.E. Martinez M.L. Dirksen P.M. Bode et al. (1997) ArticleTitleBudhead, a fork Head/HNF-3 Homologue, Is Expressed During Axis Formation and Head Specification in Hydra Dev. Biol. 192 523–536

    Google Scholar 

  67. A.T. Masterman (1898) ArticleTitleOn the Theory of Archimeric Segmentation and Its Bearing upon the Phyletic Classification of the Coelomata Proc. Roy. Soc. 22 270–310

    Google Scholar 

  68. A.P. Monaghan K.H. Kaestner E. Grau G. Schutz (1993) ArticleTitlePostimplantation Expression Patterns Indicate a Role for the Mouse forkhead/HNF-3 Alpha, Beta and Gamma Genes in Determination of the Definitive Endoderm, Chordomesoderm and Neuroectoderm Development 119 567–578 Occurrence Handle1:CAS:528:DyaK2cXisVWjtrk%3D Occurrence Handle8187630

    CAS  PubMed  Google Scholar 

  69. A. Naef (1927) ArticleTitleNotizen zur Morphologie und Stammesgeschichte der Wirbeltiere.14. Blastoporusverschluss und Schwanzknospenanlage bei den Anamnieneirn Zool. Jahrb. Abt. Anat. 49 357–390

    Google Scholar 

  70. C. Nielsen (1999) ArticleTitleOrigin of the Chordate Central Nervous System and the Origin of Chordates Dev. Genes Evol. 209 198–205

    Google Scholar 

  71. K. Nubler-Jung D. Arendt (1994) ArticleTitleIs Ventral in Insects Dorsal in Vertebrates? Roux’s Arch. Dev. Biol. 203 357–366

    Google Scholar 

  72. Remane, A., Die Entstehung der Metamerie der Wirbellosen, Verh. Deutsch. Zool. Ges., 1950 (1949). S. 16–23.

  73. R.M. Rieger (1994) ArticleTitleThe Biphasic Life Cycle—A Central Theme of Metazoan Evolution Am. Zool. 34 484–491

    Google Scholar 

  74. A. Ruiz i Altaba T.M. Jessell (1992) ArticleTitlePintallavis, a Gene Expressed in the Organizer and Midline Cells of a Frog Embryo: Involment in the Development of Neural Axis Development 116 81–93

    Google Scholar 

  75. L. Salvini-Plawen Particlevon (1968) ArticleTitleDie Funktions-Coelomtheorie in der Evolution der Mollusken Syst. Zool. 17 192–208

    Google Scholar 

  76. B. Schierwater M. Murtha M. Dick et al. (1991) ArticleTitleHomeoboxes in Cnidarians J. Exp. Zool. 260 413–416

    Google Scholar 

  77. C.B. Scholz U. Technau (2003) ArticleTitleThe Ancestral Role of Brachyury: Expression of NemBra1 in the Basal Cnidarian Nematostella vectensis (Anthozoa) Dev. Genes Evol. 212 563–570

    Google Scholar 

  78. A. Sedgwick (1884) ArticleTitleOn the Origin of Metameric Segmentation and Some Other Morphological Questions Quart. J. Microsc. Sci. 24 43–82

    Google Scholar 

  79. R. Seifert M. Jacob H.J. Jacob (1993) ArticleTitleThe Avian Prechordal Head Region: A Morphological Study J. Anat. 183 75–89

    Google Scholar 

  80. R. Siewing (1967) ArticleTitleDiscussions beitrag zur Phylogenie der Coelomaten Zool. Anz. 179 132–176

    Google Scholar 

  81. R. Siewing (1980) ArticleTitleDas Archicoelomatenkoncept Zool. Jahrb. 103 439–482

    Google Scholar 

  82. K. Tagawa T. Humpreys N. Satoh (1998) ArticleTitleNovel Pattern of Brachyury Gene Expression in Hemichordate Embryos Mech. Dev. 75 139–143

    Google Scholar 

  83. N. Takada T. Goto N. Satoh (2002) ArticleTitleExpression Pattern of the Brachyury Gene in the Arrow Worm Paraspadella gotoi (Chaetognatha) Genesis 32 240–245

    Google Scholar 

  84. U. Technau (2001) ArticleTitleBrachyury, the Blastopore and Evolution of the Mesoderm BioAssays 23 788–794

    Google Scholar 

  85. U. Technau H.R. Bode (1999) ArticleTitleHyBra1, a Brachyury Homologue, Acts During Head Formation in Hydra Development 126 999–1010

    Google Scholar 

  86. Ulrich, W., Vorschlaege zu einer Revision der Grosseinteilung des Tierreichs, Verh. Deutsch. Zool. Ges. Marburg, 1951(1950), pp. 215–271.

  87. D. Weigel G. Jurgens F. Kuttner et al. (1989) ArticleTitleThe Homeotic Gene fork head Encodes a Nuclear Protein and Is Expressed in the Terminal Regions of the Drosophila Embryo Cell 57 645–658

    Google Scholar 

  88. A. Wierzejski (1905) ArticleTitleEmbryologie von Physa fontinalis L. Z. Wiss. Zool. 83 502–706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2004 by Biologiya Morya, Malakhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malakhov, V.V. New ideas on the origin of bilateral animals. Russ J Mar Biol 30 (Suppl 1), S22–S33 (2004). https://doi.org/10.1007/s11179-005-0019-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11179-005-0019-4

Key words

Navigation