Skip to main content
Log in

Comparative Study of Two Methods of Orthogonal Double-Pulse Laser-Induced Breakdown Spectroscopy of Aluminum

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Double-pulse laser induced breakdown spectroscopy (DP-LIBS) of aluminum sample is studied experimentally in orthogonal configuration in air. In this configuration, two schemes of reheating and pre-ablation are examined and the results are compared with single pulse one. The effect of delay time between two laser pulses on emission line intensities of plasma is investigated. Some of the parameters that have been involved in different mechanism of signal enhancement such as plasma temperature, sample heating effects, atmospheric effects, and modification of the ablation dynamics are more discussed. Investigation of the effect of laser pulse energy on emission line intensities in single pulse LIBS experiment demonstrate that because of saturation effects the intensities will not increase necessarily by increasing the laser pulse energy. Moreover, the results show that the electron temperature and rate of mass removal in orthogonal configuration of DP-LIBS is higher than that of single pulse with the same total energy. It is suggested that for correct comparison between single and double pulse results, the optimum pulse energy in single pulse should be considered. Overall, our results demonstrate that under optimized conditions the signal enhancement is much more in pre-ablation configuration than re-heating configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2013).

    Book  Google Scholar 

  2. R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Springer, 2012).

    Book  Google Scholar 

  3. S. I. Miziolek and V. Palleschi, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  4. M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Appl. Opt. 54, 123 (2015).

    Article  ADS  Google Scholar 

  5. W. A. Farooq, F. N. Al-Mutairi, A. E. M. Khater, A. S. Al-Dwayyan, M. S. AlSalhi, and M. Atif, Opt. Spectrosc. 112, 874 (2012).

    Article  ADS  Google Scholar 

  6. M. Khater, Opt. Spectrosc. 115, 574 (2013).

    Article  ADS  Google Scholar 

  7. W. A. Farooq, F. N. Al-Mutairi, and Z. A. Alahmed, Opt. Spectrosc. 115, 241 (2013).

    Article  ADS  Google Scholar 

  8. M. Bahreini, B. Ashrafkhani, and S. H. Tavassoli, Appl. Phys. B: Lasers Opt. 114, 439 (2013).

    Article  ADS  Google Scholar 

  9. M. Bahreini, Z. Hosseinimakarem, and S. Hassan Tavassoli, J. Appl. Phys. 112, 054701 (2012).

    Article  ADS  Google Scholar 

  10. M. Bahreini and S. H. Tavassoli, J. Lasers Med. Sci. 3, 127 (2012).

    Google Scholar 

  11. S. Shadman, M. Bahreini, and S. H. Tavassoli, Appl. Opt. 51, 2004 (2012).

    Article  ADS  Google Scholar 

  12. M. Bahreini, B. Ashrafkhani, and S. H. Tavassoli, J. Biomed. Opt. 18, 107006 (2013).

    Article  Google Scholar 

  13. H. Bette, R. Noll, G. Muller, H.-W. Jansen, C. Nazikkol, and H. Mittelstadt, J. Laser Appl. 17, 183 (2005).

    Article  Google Scholar 

  14. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, Spectrochim. Acta B: At. Spectrosc. 57, 1115 (2002).

    Article  ADS  Google Scholar 

  15. G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, in Proceedings of the International Conference on Lasers, Applications, and Technologies 2005, Proc. SPIE—Int. Soc. Opt. Eng. 6284, 1 (2005).

    Google Scholar 

  16. B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, Spectrochim. Acta B: At. Spectrosc. 60, 805 (2005).

    Article  ADS  Google Scholar 

  17. C. López-Moreno, S. Palanco, J. J. Laserna, F. DeLucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, J. Anal. At. Spectrom. 21, 55 (2006).

    Article  Google Scholar 

  18. J. J. Laserna, D. Romero, and J. M. Ferna, J. Anal. At. Spectrom. 14, 199 (1999).

    Article  Google Scholar 

  19. A. Santagata, A. de Bonis, P. Villani, R. Teghil, and G. P. Parisi, Appl. Surf. Sci. 252, 4685 (2006).

    Article  ADS  Google Scholar 

  20. V. Hohreiter and D. W. Hahn, Spectrochim. Acta B: At. Spectrosc. 60, 968 (2005).

    Article  ADS  Google Scholar 

  21. V. N. Rai, F.-Y. Yueh, and J. P. Singh, Appl. Opt. 42, 2094 (2003).

    Article  ADS  Google Scholar 

  22. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, Fresenius. J. Anal. Chem. 369, 320 (2001).

    Article  Google Scholar 

  23. C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, Spectrochim. Acta B: At. Spectrosc. 60, 265 (2005).

    Article  ADS  Google Scholar 

  24. D. A. Cremers, L. J. Radziemski, and T. R. Loree, Appl. Spectrosc. 38, 721 (1984).

    Article  ADS  Google Scholar 

  25. A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, Anal. Bioanal. Chem. 385, 240 (2006).

    Article  Google Scholar 

  26. H. Balzer, S. Hölters, V. Sturm, and R. Noll, Anal. Bioanal. Chem. 385, 234 (2006).

    Article  Google Scholar 

  27. S. Pandhija and A. K. Rai, Environ. Monit. Assess. 148, 437 (2009).

    Article  Google Scholar 

  28. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, Appl. Spectrosc. 58, 897 (2004).

    Article  ADS  Google Scholar 

  29. F. C. de Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Spectrochim. Acta B: At. Spectrosc. 62, 1399 (2007).

    Article  ADS  Google Scholar 

  30. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, Spectrochim. Acta B: At. Spectrosc. 60, 1014 (2005).

    Article  ADS  Google Scholar 

  31. B. Rashid, R. Ahmed, R. Ali, and M. A. Baig, Phys. Plasmas 18, 073301 (2011).

    Article  ADS  Google Scholar 

  32. D. N. Stratis, K. L. Eland, and S. M. Angel, Appl. Spectrosc. 55, 1297 (2001).

    Article  ADS  Google Scholar 

  33. L. St-Onge, V. Detalle, and M. Sabsabi, Spectrochim. Acta B: At. Spectrosc. 57, 121 (2002).

    Article  ADS  Google Scholar 

  34. P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Spectrochim. Acta B: At. Spectrosc. 60, 1392 (2005).

    Article  ADS  Google Scholar 

  35. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, Appl. Spectrosc. 60, 65 (2006).

    Article  ADS  Google Scholar 

  36. A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, Phys. Plasmas 20, 103110 (2013).

    Article  ADS  Google Scholar 

  37. R. Ahmed and M. A. Baig, J. Appl. Phys. 106, 033307 (2009).

    Article  ADS  Google Scholar 

  38. J. Uebbing, J. Brust, W. Sdorra, and F. Leis, Appl. Spectrosc. 45, 1419 (1991).

    Article  ADS  Google Scholar 

  39. D. N. Stratis, K. L. Eland, and S. M. Angel, Appl. Spectrosc. 54, 1270 (2000).

    Article  ADS  Google Scholar 

  40. Q. Wang, J.-G. Wang, Y.-X. Liang, X.-L. Chen, B. Wu, Z.-B. Ni, and F.-Z. Dong, Proc. SPIE—Int. Soc. Opt. Eng. 8201, 82012I (2011).

    Google Scholar 

  41. X. Fang and S. Rafi Ahmad, Laser Part. Beams 25, 613 (2007).

    Article  Google Scholar 

  42. V. Hohreiter, J. E. Carranza, and D. W. Hahn, Spectrochim. Acta B: At. Spectrosc. 59, 327 (2004).

    Article  ADS  Google Scholar 

  43. V. S. Burakov, A. F. Bokhonov, M. I. Nedel, and N. V. Tarasenko, Quantum Electron. 33, 1065 (2003).

    Article  ADS  Google Scholar 

  44. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  45. A. M. El Sherbini, H. Hegazy, and T. M. El Sherbini, Spectrochim. Acta B: At. Spectrosc. 61, 532 (2006).

    Article  ADS  Google Scholar 

  46. V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, Spectrochim. Acta B: At. Spectrosc. 56, 1011 (2001).

    Article  ADS  Google Scholar 

  47. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Spectrochim. Acta B: At. Spectrosc. 57, 339 (2002).

    Article  ADS  Google Scholar 

  48. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, J. Quant. Spectrosc. Radiat. Transf. 75, 747 (2002).

    Article  ADS  Google Scholar 

  49. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, J. Appl. Phys. 98, 033302 (2005).

    Article  ADS  Google Scholar 

  50. R. Sattmann, V. Sturm, and R. Noll, J. Phys. D: Appl. Phys. 28, 2181 (1995).

    Article  ADS  Google Scholar 

  51. R. Sanginés, H. Sobral, and E. Alvarez-zauco, Spectrochim. Acta B: At. Spectrosc. 68, 40 (2012).

    Article  ADS  Google Scholar 

  52. S. H. Tavassoli and A. Gragossian, Opt. Laser Technol. 41, 481 (2009).

    Article  ADS  Google Scholar 

  53. G. Galbács, V. Budavári, and Z. Geretovszky, J. Anal. At. Spectrom. 20, 974 (2005).

    Article  Google Scholar 

  54. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, Spectrochim. Acta B: At. Spectrosc. 57, 1167 (2002).

    Article  ADS  Google Scholar 

  55. J. Scaffidi, W. Pearman, J. C. Carter, B. W. Colston, and S. M. Angel, Appl. Opt. 43, 6492 (2004).

    Article  ADS  Google Scholar 

  56. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Taylor Francis, London, 1993).

    MATH  Google Scholar 

  57. Ya. B. Zel’dovich, and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, New York, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safi, A., Bahreini, M. & Tavassoli, S.H. Comparative Study of Two Methods of Orthogonal Double-Pulse Laser-Induced Breakdown Spectroscopy of Aluminum. Opt. Spectrosc. 120, 367–378 (2016). https://doi.org/10.1134/S0030400X16030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16030024

Keywords

Navigation