Skip to main content
Log in

Enhancement of Laser-induced Breakdown Spectroscopy (LIBS) Signal Subject to the Magnetic Confinement and Dual Pulses

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In this work, a comparative study for the laser-induced breakdown spectroscopy (LIBS) of aluminium (Al) target has been performed by using the two kinds of enhancement techniques, namely, magnetic confinement and double pulse-LIBS (DP-LIBS). Firstly, the signal enhancement of Al plasma by combining the LIBS with an external magnetic field was exposed. Secondly, the signal enhancement by configuring the dual-pulses action in LIBS was performed. We found that the optical emission lines and plasma parameters (electron temperature and density) showed significant enhancement in the presence of magnetic field and DP-LIBS. During the magnetic confinement, the maximum enhancement factors of about 6 and 8 were achieved for the spectral line Mg(II) 279.5 nm and Al(II) 280.1 nm, respectively. An enhancement factor was reached up to 12-folds for the various spectral lines in DP-LIBS. Our results have significance in improving the LIBS sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  2. M. A. Gondal, M. A. Shemis, B. Gondal, and A. I. Khalil, Med. Bioeng. 5, 85 (2016).

    Google Scholar 

  3. N. Farid, H. B. Wang, C. Li, X. W. Wu, H. Yousefioderji, H. B. Ding, and G. N. Luo, Nucl. Mater. 438, 183 (2013).

    Article  ADS  Google Scholar 

  4. A. Hussain, H. Asghar, M. Tanveer, M. Zafar, Quratul-Ain, and Z. Nawaz, Optik 201, 163340 (2020).

    Article  ADS  Google Scholar 

  5. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, Fresenius J. Anal. Chem. 369, 320 (2001).

    Article  Google Scholar 

  6. A. Hussain, G. Xun, H. Zuoqiang, and L. Jingquan, Optik 127, 10024 (2016).

    Article  ADS  Google Scholar 

  7. Y. Ito, O. Ueki, and S. Nanamura, Anal. Chim. Acta 299, 410 (1995).

    Article  Google Scholar 

  8. R. A. Multari, L. E. Foster, D. A. Cremers, and M. J. Ferris, Appl. Spectrosc. 50, 1483 (1996).

    Article  ADS  Google Scholar 

  9. A. Kumar, R. K. Singh, and H. Joshi, Spectrochim. Acta B 6, 444 (2011).

    Article  ADS  Google Scholar 

  10. A. Kumar, H. C. Joshi, V. Prahlad, and R. K. Singh, Phys. Lett. A 374, 2555 (2010).

    Article  ADS  Google Scholar 

  11. L. Torrisi, D. Margarone, S. Gammino, and L. Andò, Laser Part. Beams 25, 453 (2007).

    Article  ADS  Google Scholar 

  12. A. Kumar, S. George, R. K. Singh, and H. Joshi, Laser Part. Beams 29, 241 (2011).

    Article  ADS  Google Scholar 

  13. H. C. Pant, Phys. Scr. 49, 109 (1994).

    Article  Google Scholar 

  14. A. Hussain, M. Tanveer, G. Farid, M. B. Hussain, M. Azam, and W. Khan, Optik 172, 1012 (2018).

    Article  ADS  Google Scholar 

  15. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, Appl. Opt. 42, 2085 (2003).

    Article  ADS  Google Scholar 

  16. L. Cheng, G. Xun, L. Qi, S. Chao, and J. Q. Lin, Plasma Sci. Technol. 17, 919 (2015).

    Article  ADS  Google Scholar 

  17. Y. Li, C. H. Hu, H. Z. Zhang, Z. K. Jiang, and Z. S. Li, Appl. Opt. 48, B105 (2009).

    Article  ADS  Google Scholar 

  18. R. Noll, Anal. Bioanal. Chem. 385, 214 (2006).

    Article  Google Scholar 

  19. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, Appl. Spectrosc. 45, 1419 (1991).

    Article  ADS  Google Scholar 

  20. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, Spectrochim. Acta, B 57, 1115 (2002).

    Article  ADS  Google Scholar 

  21. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, Anal. At. Spectrom. 19, 419 (2004).

    Article  Google Scholar 

  22. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Appl. Phys. B 80, 559 (2005).

    Article  ADS  Google Scholar 

  23. A. Kuwako, Y. Uchida, and K. Maeda, Appl. Opt. 42, 6052 (2003).

    Article  ADS  Google Scholar 

  24. X. Zhao and Y. C. Shin, Appl. Phys. Lett. 105, 111907 (2014).

    Article  ADS  Google Scholar 

  25. R. Ahmed and M. A. Baig, J. Appl. Phys. 106, 033307 (2009).

    Article  ADS  Google Scholar 

  26. I. Y. Elnasharty, F. R. Doucet, J. F. Y. Gravel, P. Bouchard, and M. Sabsabi, Anal. At. Spectrom. 29, 1660 (2014).

    Article  Google Scholar 

  27. J. T. Schiffern, D. W. Doerr, and D. R. Alexander, Spectrochim. Acta, B 62, 1412 (2007).

    Article  ADS  Google Scholar 

  28. P. K. Diwakar, S. S. Harilal, J. R. Freeman, and A. Hassanein, Spectrochim. Acta, B 87, 65 (2013).

    Article  ADS  Google Scholar 

  29. S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, Phys. Rev. E 69, 026413 (2004).

    Article  ADS  Google Scholar 

  30. A. Neogi and R. K. Thareja, Phys. Plasmas 6, 365 (1999).

    Article  ADS  Google Scholar 

  31. A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. Salman Ahmad, Appl. Phys. B 122, 63 (2016).

    Article  ADS  Google Scholar 

  32. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (CRC, Boca Raton, FL, 2015).

    Book  Google Scholar 

  33. H. Iftikhar, S. Bashir, A. Dawood, M. Akram, and A. Hayat, Laser Part. Beams 35, 159 (2017).

    Article  ADS  Google Scholar 

  34. J. W. Poukey, Phys. Fluids 10, 2253 (1967).

    Article  ADS  Google Scholar 

  35. D. K. Bhadra, Phys. Fluids 11, 234 (1968).

    Article  ADS  Google Scholar 

  36. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, and Y. X. Han, J. Appl. Phys. 100, 053303 (2006).

    Article  ADS  Google Scholar 

  37. M. Akhtar, A. Jabbar, S. Mehmood, N. Ahmed, R. Ahmed, and M. A. Baig, Spectrochim. Acta, B 148, 143 (2018).

    Article  ADS  Google Scholar 

  38. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, J. Appl. Phys. 82, 21406 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Ayesha Abbas (Agriculture University, Faislabad) for useful discussion during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Hussain.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Xun, G., Asghar, H. et al. Enhancement of Laser-induced Breakdown Spectroscopy (LIBS) Signal Subject to the Magnetic Confinement and Dual Pulses. Opt. Spectrosc. 129, 452–459 (2021). https://doi.org/10.1134/S0030400X21040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21040068

Keywords:

Navigation