Skip to main content
Log in

CryoEM Investigation of Three-Dimentional Structure of the Stx-Converting Bacteriophage ϕ24B

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A modified method for culturing, concentrating, and purifying phage ϕ24B preparations was developed. In particular, a new lysogenic phage-producing strain lacking flagella was used, induction conditions were optimized, and purification in a sucrose gradient followed by concentration by deposition on a Freon 113 cushion were used. Using this method, a preparation of the Stx-converting bacteriophage ϕ24B was obtained, suitable for CryoEM direct analysis. Based on CryoEM data for this phage, the first primary three-dimensional reconstruction of its virions was performed. The structure of the phage ϕ24B tail is described. It was shown that the adsorption apparatus of this virus is represented by six thin lateral fibrils, and an axial fibril located at the end of the tail. This arrangement of the tail structure is consistent with the previously proposed hypothesis based on analysis of the receptor binding proteins (RBPs) of this bacteriophage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Allison, H.E., Sergeant, M.J., James, C.E., Saunders, J.R., Smith, D.L., Sharp, R.J., Marks, T.S., and McCarthy, A.J., Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens, Infect. Immun., 2003, vol. 71, no. 6, pp. 3409‒3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blake, K.S., Choi, J., and Dantas, G., Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria, Cell Mol. Life Sci., 2021, vol. 78, no. 6, pp. 2585‒2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Callaway, T.R., Carr, M.A., Edrington, T.S., Anderson, R.C., and Nisbet, D.J., Diet, Escherichia coli O157:H7, and cattle: a review after 10 years, Curr. Iss. Mol. Biol., 2009, vol. 11, no. 2, pp. 67‒79.

    CAS  Google Scholar 

  4. de Oliveira, G.A. and Silva, J.L., Cryo-EM to visualize the structural organization of viruses, Curr. Opin. Virol., 2021, vol. 49, pp. 86‒91.

    Article  CAS  PubMed  Google Scholar 

  5. Freedman, S.B., Xie, J., Neufeld, M.S., Hamilton, W.L., Hartling, L., Tarr, P.I., Alberta Provincial Pediatric Enteric Infection Team, Nettel-Aguirre, A., Chuck, A., Lee, B., Johnson, D., Currie, G., Talbot, J., Jiang, J., Dickinson, J., et al., Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis, Clin. Infect. Dis., 2016, vol. 62, no. 10, pp. 1251‒1258.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Golomidova, A.K., Efimov, A.D., Kulikov, E.E., Kuznetsov, A.S., Belalov, I.S., and Letarov, A.V., O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B, Sci. Rep., 2021, vol. 11, no. 1, p. 3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kulikov, E.E., Golomidova, A.K., Prokhorov, N.S., Ivanov, P.A., and Letarov, A.V., High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies, Sci. Rep., 2019, vol. 9, no. 1, p. 2958.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Llarena, A.K., Aspholm, M., O’Sullivan, K., Wegrzyn, G., and Lindback, T., Replication region analysis reveals non-lambdoid Shiga toxin converting bacteriophages, Front. Microbiol., 2021, vol. 12, p. 640945.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mathieu, A., Dion, M., Deng, L., Tremblay, D., Moncaut, E., Shah, S.A., Stokholm, J., Krogfelt, K.A., Schjorring, S., Bisgaard, H., Nielsen, D.S., Moineau, S., and Petit, M.A., Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages, Nat. Commun., 2020, vol. 11, no. 1, p. 378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muniesa, M., Serra-Moreno, R., and Jofre, J., Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved, Environ. Microbiol., 2004, vol. 6, no. 7, pp. 716‒725.

    Article  CAS  PubMed  Google Scholar 

  11. Riley, L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli, Clin. Microbiol. Infect., 2014, vol. 20, no. 5, pp. 380‒390.

    Article  CAS  PubMed  Google Scholar 

  12. Rollauer, S.E., Sooreshjani, M.A., Noinaj, N., and Buchanan, S.K., Outer membrane protein biogenesis in gram-negative bacteria, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, vol. 370, no. 1679.

  13. Sausset, R., Petit, M.A., Gaboriau-Routhiau, V., and De Paepe, M., New insights into intestinal phages, Mucosal Immunol., 2020, vol. 13, no. 2, pp. 205‒215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, D.L., James, C.E., Sergeant, M.J., Yaxian, Y., Saunders, J.R., McCarthy, A.J., and Allison, H.E., Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria, J. Bacteriol., 2007, vol. 189, no. 20, pp. 7223‒7233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, D.L., Rooks, D.J., Fogg, P.C., Darby, A.C., Thomson, N.R., McCarthy, A.J., and Allison, H.E., Comparative genomics of Shiga toxin encoding bacteriophages, BMC Genomics, 2012, vol. 13, p. 311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Todd, E.P.D., Preliminary estimates of costs of foodborne disease in Canada and costs to reduce salmonellosis, J. Food Prot., 1989, vol. 52, no. 8, pp. 586‒594.

    Article  PubMed  Google Scholar 

  17. Trachtman, H., Austin, C., Lewinski, M., and Stahl, R.A., Renal and neurological involvement in typical Shiga toxin-associated HUS, Nat. Rev. Nephrol., 2012, vol. 8, no. 11, pp. 658‒669.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J.T., Yang, F., Du, K., Li, W.F., Chen, Y., Jiang, Y.L., Li, Q., and Zhou, C.Z., Structure and assembly pattern of a freshwater short-tailed cyanophage Pam1, Structure, 2022, vol. 30, no. 2, pp. 240‒251, e244.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuznetsov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.S., Moiseenko, A.V., Kulikov, E.E. et al. CryoEM Investigation of Three-Dimentional Structure of the Stx-Converting Bacteriophage ϕ24B. Microbiology 93, 349–352 (2024). https://doi.org/10.1134/S0026261723604591

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723604591

Keywords:

Navigation